Skip to main content

Transport of polar stratospheric clouds from the arctic to Tomsk in January 2010

Abstract

Lidar observations in Tomsk in January, 2010, recorded pronounced peaks of aerosol scattering in the stratosphere at heights from 14 to 24 km. Back trajectory calculations of air mass transport to Tomsk showed that enhanced aerosol scattering was directly associated with the cooling of air masses 6–12 h before their occurrence over Tomsk below temperature thresholds for polar stratospheric cloud formation. The back trajectory calculations showed that the polar stratospheric clouds recorded in Tomsk at heights of 16–24 km could have been formed over the Scandinavian mountains, and clouds at heights of 11–14 km could have been formed over the mountain ridges of the Polar Ural Mountains and Novaya Zemlya Archipelago. The presence of synoptic-scale stratospheric aerosol in these regions in January, 2010, was confirmed by data from the CALIOP satellite lidar.

This is a preview of subscription content, access via your institution.

References

  1. K. Ya. Kondrat’ev, “From Nano-to Global Scales: Properties, Processes of Formation, and Aftereffects of Atmospheric Aerosol Impacts. 3. Processes of Aerosol Formation (Nucleation),” Atmos. Ocean. Opt. 17(10), 697–713 (2004).

    Google Scholar 

  2. A. V. El’nikov, V. V. Zuev, and V. D. Burlakov, “About Types of Polar Stratospheric Clouds Observed in January 1995 over Tomsk,” in Modern Achievements in Environmental and Ecological Studies (STT, Tomsk, 2004), pp. 29–32 [in Russian].

    Google Scholar 

  3. A. A. Cheremisin, A. V. Kushnarenko, V. N. Marichev, and S. V. Nikolashkin, “Meteorological Conditions and Polar Stratospheric Clouds over Yakutsk in Winter 2004/05,” Rus. Meteorol. Hydrol. 32(3), 43–53 (2007).

    Google Scholar 

  4. O. E. Bazhenov, “Long-Term Trends of Variations in Total Ozone Content According to Data of Ground-Based (Tomsk: 56.48° N, 85.05° E) and Satellite Measurements,” Atmos. Ocean. Opt. 25(2), 142–146 (2012).

    Article  Google Scholar 

  5. O. E. Bazhenov and V. D. Burlakov, “Anomalous Decrease of the Level of the Total Ozone Content over Tomsk and Northern Territory of Russia in March–April 2011,” Opt. Atmosf. Okeana 24(10), 915–919 (2011).

    Google Scholar 

  6. V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar Observations of the Stratosphere Aerosol Disturbances over Tomsk (56.5° N; 85.0° E) in Period of Volcanic Activity of 2006–2010,” Opt. Atmosf. Okeana 24(12), 1031–1040 (2011).

    Google Scholar 

  7. V. N. Marichev and I. V. Samokhvalov, “Lidar Observations of Aerosol Volcanic Layers in Stratosphere of Western Siberia in 2008–2010,” Opt. Atmosf. Okeana 24(3), 224–231 (2011).

    Google Scholar 

  8. A. V. El’nikov, G. M. Krekov, and V. N. Marichev, “Lidar Observations of Stratospheric Aerosol Layer over Western Siberia,” Izv. AN SSSR, Fiz. Atmosf. Okeana 24(8), 818–823 (1988).

    ADS  Google Scholar 

  9. M. C. Pitts, L. R. Poole, A. Dörnbrack, and L. W. Thomason, http://www.atmos-chem-phys.net/11/2161/2011/

  10. V. A. Tereshchenko, V. D. Tereshchenko, and S. M. Chernyakov, “Winter Polar Stratospheric Clouds in 2010,” Vestn. MGTU 13(4/2), 1052–1059 (2010).

    Google Scholar 

  11. B. Stein, C. Wedekind, H. Wille, F. Immler, M. Müller, L. Wöste, M. del Guasta, M. Morandi, L. Stefanutti, A. Antonelli, P. Agostini, V. Rizi, G. Readelli, V. Mitel, R. Matthey, R. Kivi, and E. Kyrö, “Optical Classification, Existence Temperatures, and Coexistence of Different Polar Stratospheric Cloud Types,” J. Geophys. Res., D 104(19), 23983–23993 (1999).

    ADS  Article  Google Scholar 

  12. C. Voigt, H. Schlager, B. P. Luo, A. Dörnbrack, A. Roiger, P. Stock, J. Curtius, H. Vössing, S. Borrmann, S. Davies, P. Konopka, C. Schiller, G. Shur, and T. Peter, “Nitric Acid Trihydrate (NAT) Formation at Low NAT Supersaturation in Polar Stratospheric Clouds (PSCs),” Atmos. Chem. Phys. 5, 1371–1380 (2005).

    ADS  Article  Google Scholar 

  13. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Lidar Observations of Volcanic Aerosol Content in the Atmosphere over Tomsk,” Rus. Meteorol. Hydrol. 36(9), 600–607 (2011).

    Article  Google Scholar 

  14. R. Swinbank, A. O’ Neill, A. C. Lorenc, S. P. Ballard, R. S. Bell, N. B. Ingleby, P. L. F. Andrews, D. M. Barker, J. R. Bray, A. M. Clayton, T. Dalby, D. Li, T. J. Payne, F. W. Saunders, B. Macpherson, M. J. P. Cullen, T. Davies, and M. H. Mawson, Stratospheric Assimilation Data (British Atmospheric Data Center, 2006) (http://badc.nerc.ac.uk/data/assim/).

    Google Scholar 

  15. V. N. Marichev, “Lidar Investigations of Stratospheric Warming Events above Tomsk in 2008–2010,” Opt. Atmosf. Okeana 24(5), 386–391 (2011).

    Google Scholar 

  16. V. N. Marichev, “Investigation into Features of Manifestation of Winter Stratospheric Warming Events over Tomsk from Data of Lidar Temperature Measurements in 2010–2011,” Opt. Atmosf. Okeana 24(12), 1041–1046 (2011).

    Google Scholar 

  17. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, and A. V. Fofonov, “The Blocking Role of the Ural Mountains in the Transborder Transfer of Impurities from Europe to Asia,” Opt. Atmosf. Okeana 24(3), 242–247 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Cheremisin, V.N. Marichev, P.V. Novikov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheremisin, A.A., Marichev, V.N. & Novikov, P.V. Transport of polar stratospheric clouds from the arctic to Tomsk in January 2010. Atmos Ocean Opt 26, 492–498 (2013). https://doi.org/10.1134/S1024856013060031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013060031

Keywords

  • Lidar
  • Stratospheric Aerosol
  • Total Ozone Content
  • Lidar Observation
  • Aerosol Scattering