Skip to main content

Spectrochemical features of certain brisant explosives in the vapor state

Abstract

IR-absorption spectra of TNT, RDX, and PETN molecules in the vapor state have been analyzed over wide ranges of frequencies (3500–500 cm−1) and temperatures (293–383 K) with assignment of the bands observed. Up-to-date methods of quantum chemistry were employed for the determination of equilibrium geometrical configurations of explosive molecules and calculation of fundamental vibrational frequencies. Absorption cross-sections and coefficients have been estimated for the strongest bands in the IR-spectra of TNT, RDX, and PETN in the vapor state. To refine the physicochemical processes occurring during heating and evaporation of TNT, RDX, and PETN, as well as to determine and identify their characteristic volatile components, subTHz- and mass-spectra of these explosives have been studied.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Yelleti, E. Wilkins, R. A. Sitdikov, and I. Seoudi, “Methods of Detection of Explosives”, in Sensors for Chemical and Biological Applications, Ed. by M. Ram and V. Bhethanabotla (CRC Press, New York, 2010), pp. 277–293.

    Chapter  Google Scholar 

  2. 2.

    V. M. Gruznov, V. G. Filonenko, M. N. Baldin, and A. T. Shishmarev, “Portable Express Gas Analyzers for Detection of Trace Quantities of Substances,” Ros. Khim. Zh. 46(4), 100–108 (2002).

    Google Scholar 

  3. 3.

    G. A. Eiceman and Z. Karpas, Ion Mobility Spectrometry (CRC Press, New York, 2005), 2nd ed.

    Book  Google Scholar 

  4. 4.

    A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, “Laser Methods of Detecting Vapor Explosives in the Open Atmosphere: Analytical Possibilities for Counteracting Terrorist Acts,” Atmos. Ocean. Opt. 24(2), 133–143 (2011).

    Article  Google Scholar 

  5. 5.

    M. Leahy-Hoppa, M. Fitch, and R. Osiander, “Terahertz Spectroscopy Techniques for Explosives Detection,” Anal. Bioanal. Chem. 395(2), 247–257 (2009).

    Article  Google Scholar 

  6. 6.

    Sh. Sh. Nabiev, D. B. Stavrovskii, V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, E. A. Sobakinskaya, and M. B. Chernyaeva, “Analyzsis of the Products of the Natural Decay of High Explosives by Subterahertz and Infrared Fourier Spectroscopy,” Rus. J. Phys. Chem. 85(8), 1404–1410 (2011).

    Article  Google Scholar 

  7. 7.

    B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, and D. H. Fine, “Vapor Pressure of Explosives,” J. Energetic Mater. 4(1), 447–472 (1986).

    Article  Google Scholar 

  8. 8.

    B. T. Kenna, F. J. Conrad, and D. W. Hannum, “Explosive Vapor Emission,” in Proc. of the 1st Int. Sympos. Explos. Detect. Technol., Ed. by S. M. Khan (FAA Atlantic City, NJ, 1991), p. 510–517.

    Google Scholar 

  9. 9.

    K. L. McNesby and R. A. Pesce-Rodriguez, “Applications of Vibrational Spectroscopy in the Study of Explosives,” in Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, West Sussex, 2002), p. 3152.

    Google Scholar 

  10. 10.

    E. Yu. Orlova, Chemistry and Technology of Brisant Explosives (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  11. 11.

    Explosives, Ed. by R. Meyer and J. Kohler (WileyVCH, New York, 2007), 6th ed.

    Google Scholar 

  12. 12.

    V. F. Zhilin, E. Yu. Orlova, G. M. Shutov, V. L. Zbarskii, G. F. Rudakov, and E. V. Veselova, Handbook on Laboratory Practical Work on Synthesis of Nitro Compounds (MKhTI im. D.I. Mendeleeva, Moscow, 2007) [in Russian].

    Google Scholar 

  13. 13.

    G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, and J. E. Parmeter, “Quantitative Calibration of Vapor Levels of TNT, RDX, and PETN Using a Diffusion Generator with Gravimetry and Ion Mobility Spectrometry,” Talanta 45(1), 57–74 (1997).

    Article  Google Scholar 

  14. 14.

    A. D. Becke, “Density Functional Thermochemistry, III. The Role of Exact Exchange,” J. Chem. Phys. 98(7), 5648–5652 (1993).

    ADS  Article  Google Scholar 

  15. 15.

    T. H. Dunning, Jr., “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen,” J. Chem. Phys. 90(2), 1007–1023 (1989).

    ADS  Article  Google Scholar 

  16. 16.

    F. Neese, ORCA-An Ab Initio, DFT and Semiemperical Program Package, 2.6.35 ed. (University of Bonn, Bonn, 2008).

    Google Scholar 

  17. 17.

    V. L. Vaks, A. B. Brailovsky, and V. V. Khodos, “Millimeter Range Spectrometer with Phase Switching-Novel Method for Reaching of the Top Sensitivity,” Int. J. Infrared & Millimeter Waves 20(5), 883–896 (1999).

    Article  Google Scholar 

  18. 18.

    Sh. Sh. Nabiev, V. L. Vaks, E. G. Domracheva, L. A. Palkina, S. I. Pripolzin, E. A. Sobakinskaya, and M. B. Chernyaeva, “Express Analysis of Water Isotopomers in the Atmosphere with the Use of Nonstationary Subterahertz and Terahertz Spectroscopy Methods,” Atmos. Ocean. Opt. 24(4), 409–409 (2011).

    Article  Google Scholar 

  19. 19.

    F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of Explosives Using Infrared Spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).

    Article  Google Scholar 

  20. 20.

    J. A. Janni, B. D. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared Absorption of Explosive Molecule Vapors,” Spectrochim. Acta. Part A 53(9), 1375–1381 (1997).

    ADS  Article  Google Scholar 

  21. 21.

    J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational Spectra of 2,4,6-Trinitrotoluene and Its Isotopically Substituted Analogues,” Spectrochim. Acta. Part A 42(1), 13–21 (1986).

    ADS  Article  Google Scholar 

  22. 22.

    R. Karpowicz and T. B. Brill, “Comparison of the Molecular Structure of Hexahydro-1,3,5-Trinitro-S-Triazine in the Vapor, Solution and Solid Phases,” J. Phys. Chem. 88(2), 348–352 (1984).

    Article  Google Scholar 

  23. 23.

    C. Nash, T. Nelson, J. Stewart, and W. Carper, “Molecular Structure and Vibrational Analysis of 2,4,6-Trinitrotoluene & 2,4,6-Alpha d3,” Spectrochim. Acta. Part A 45(5), 585–588 (1989).

    ADS  Article  Google Scholar 

  24. 24.

    A. Banas, K. Banas, M. Bahou, H. O. Moser, L. Wen, P. Yang, Z. J. Li, M. Cholewa, S. K. Lim, and Ch. H. Lim, “Post-Blast Detection of Traces of Explosives by Means of Fourier Transform Infrared Spectroscopy,” Vibration. Spectrosc. 51(2), 168–176 (2009).

    Article  Google Scholar 

  25. 25.

    Y. A. Gruzdkov and Y. M. Gupta, “Vibrational Properties and Structure of Pentaerythritol Tetranitrate,” J. Phys. Chem., A 105(25), 6197–6202 (2001).

    Article  Google Scholar 

  26. 26.

    L. F. Alzate, C. M. Ramos, Y. M. Colon, A. Santana, S. P. Hernandez-Rivera, M. E. Castro, J. G. Briano, and N. Mina, “Density Functional Theory Calculations of TNT and Its Interaction with the Siloxane Site of Clay Minerals,” Proc. SPIE-Int. Soc. Opt. Eng. 5415, 1367–1376 (2004).

    ADS  Article  Google Scholar 

  27. 27.

    J. A. Janni, Doct. Phil. Thesis (Massachusetts Institute of Technology, Massachusetts, 1998).

    Google Scholar 

  28. 28.

    R. Infante-Castillo and S. P. Hernandez-Rivera, “Theoretical and Experimental Vibrational and NMR Studies of RDX,” Proc. SPIE-Int. Soc. Opt. Eng. 5461,62012 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A Theoretical Study of the Structure and Vibrations of 2,4,6-Trinitrotolune,” J. Mol. Struct. 648, 203–214 (2003).

    ADS  Article  Google Scholar 

  30. 30.

    P. S. Kalsi, Spectroscopy of Organic Compounds (New Age, London; New York, 2004), 6th ed.

    Google Scholar 

  31. 31.

    D. I. A. Millar, “Structural Studies of RDX,” in Energetic Materials at Extreme Conditions (Springer, Berlin; Heidelberg, 2012).

    Chapter  Google Scholar 

  32. 32.

    R. Infante-Castillo, L. Pacheco-Londono, and S. Hernandez-Rivera, “Vibrational Spectra and Structure of RDX and Its 13C- and 15N-Labeled Derivatives: a Theoretical and Experimental Study,” Spectrochim. Acta. Part A 76(2) 137–141 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    J. Akhavan, “Analysis of High-Explosive Samples by Fourier Transform Raman Spectroscopy,” Spectrochim. Acta. Part A 47(9–10) 1247–1250 (1991).

    ADS  Article  Google Scholar 

  34. 34.

    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996), p. 223 [in Russian].

    Google Scholar 

  35. 35.

    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A (Wiley, N.Y., 2009), 6th ed.

    Google Scholar 

  36. 36.

    X. Gong, H. Xiao, and P. Gao, “The Molecular Structure and Thermolysis Mechanism of Pentaerythritol Tetranitrate,” Chin. J. Org. Chem. 17(6), 513–519 (1997).

    Google Scholar 

  37. 37.

    M. A. Hiskey, K. R. Brower, and J. C. Oxley, “Thermal Decomposition of Nitrate Esters,” J. Phys. Chem. 95(10), 3955–3960 (1991).

    Article  Google Scholar 

  38. 38.

    H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, Millimeter, and Microwave Spectral Line Catalog.” J. Quant. Spectrosc. Radiat. Transfer 60(5), 883–890 (1998).

    ADS  Article  Google Scholar 

  39. 39.

    J. Kimura, “Chemiluminescence’s Study on Thermal Decomposition of Nitrate Esters (PETN and NC),” Propellants, Explosives, Pyrotechnics 14(2), 89–92 (1989).

    Article  Google Scholar 

  40. 40.

    M. F. Foltz, Aging of Pentaerythritol Tetranitrate (PETN). Tech. Rep. N LLNL-TR-415057 (Livermore National Lab., Livermore, 2009).

    Book  Google Scholar 

  41. 41.

    J. M. Rosen and C. Dickinson, “Vapor Pressures and Heats of Sublimation of Some High-Melting Organic Explosives,” J. Chem. Eng. Data 14(1), 120–124 (1969).

    Article  Google Scholar 

  42. 42.

    Counterterrorist Detection Techniques of Explosives, Ed. by J. Yinon (Elsevier, New York, 2007).

    Google Scholar 

  43. 43.

    Aspects of Explosives Detection, Ed. by M. Marshall (Elsevier Science, New York; London, 2008).

    Google Scholar 

  44. 44.

    The Remote Sensing of Tropospheric Composition from Space, Ed. by J. Burrows, U. Platt, and P. Borrell (Springer-Verlag, Heidelberg, 2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Nabiev.

Additional information

Original Russian Text © Sh.Sh. Nabiev, D.B. Stavrovskii, L.A. Palkina, V.L. Zbarskii, N.V. Yudin, E.N. Golubeva, V.L. Vaks, E.G. Domracheva, E.A. Sobakinskaya, M.B. Chernyaeva, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nabiev, S.S., Stavrovskii, D.B., Palkina, L.A. et al. Spectrochemical features of certain brisant explosives in the vapor state. Atmos Ocean Opt 26, 377–390 (2013). https://doi.org/10.1134/S1024856013050126

Download citation

Keywords

  • Explosive
  • Oceanic Optic
  • PETN
  • Valence Vibration
  • Hexogen