Skip to main content
Log in

Spectroscopic factors, influencing the accuracy of the atmospheric radiative transfer simulation in the methane absorption bands in the near infrared region

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The analysis of basic spectroscopic factors influencing the simulation of atmospheric radiative transfer in the methane absorption IR bands, which are used in the problems of methane total content retrieval from atmospheric solar spectra measurements, is carried out. The role of uncertainties in the parameters of methane and water vapor absorption lines and differences in extraterrestrial solar spectrum models are considered. The comparison with measured atmospheric spectra is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC Fourth Assessment Report: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Cambridge University Press, Cambridge; New York).

  2. http://www.epa.gov/climatechange/ghgemissions/gases.html

  3. http://www.gosat.nies.go.jp/eng/gosat/page3.htm

  4. I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger, “Preliminary Validation of Column-Averaged Volume Mixing Ratios of Carbon Dioxide and Methane Retrieved from GOSAT Short-Wavelength Infrared Spectra,” Atmos. Measur. Techn. Discuss. 3(6), 5613–5643 (2010).

    Article  ADS  Google Scholar 

  5. D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The Total Carbon Column Observing Network,” Philosophical Trans. of the Royal Society, Ser. A: Mathematical, Physical and Engineering Sci. 369(1943), 2087–2112 (2011).

    Article  ADS  Google Scholar 

  6. H. Tran, “The 2ν3 Band of CH4 Revisited with Line-Mixing and Consequences for Spectroscopy and Atmospheric Retrievals,” in Abstracts of International Workshop: Spectroscopy of Methane and Derived Molecules for Atmospheric and Planetary Applications, Dole, France, 26–28 November 2012, p. 24.

  7. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S.T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer. 110(9–10), 533–572 (2009).

    Article  ADS  Google Scholar 

  8. T. Yu. Chesnokova, V. Boudon, T. Gabard, K. G. Gribanov, V. I. Zakharov, and K. M. Firsov, Near-Infrared Radiative Transfer Modeling to Retrieve Atmospheric Methane Total Amount, Solar Radiation: Protection, Management and Measurement Techniques, Ed. by Fatih Onur Hocaoglu (Nova Science Publishers, Hauppauge, New York, 2012), Ch. 2.

  9. T. Yu. Chesnokova, V. Boudon, T. Gabard, K. G. Gribanov, K. Firsov, and V. I. Zakharov, “Near-Infrared Radiative Transfer Modelling with Different CH4 Spectroscopic Databases to Retrieve Atmospheric Methane Total Amount,” J. Quant. Spectrosc. Radiat. Transfer. 112(17), 2676–2682 (2011).

    Article  ADS  Google Scholar 

  10. T. Yu. Chesnokova, Yu. V. Voronina, Yu. N. Ponomarev, and V. A. Kapitanov, “Influence of the Overlapping of the Atmospheric Gas Absorption Spectra on the Retrieval of the Total Methane Content in the Atmosphere from the Transmission in the 1.6 to 1.7 mkm Spectral Region,” Atmos. Ocean. Opt. 23(4), 322–327 (2010).

    Article  Google Scholar 

  11. Yu. V. Voronina, T. Yu. Chesnokova, A. V. Chentsov, and A. A. Solodov, “The effect of Overlapping of Atmospheric Gas Absorption Spectra on the Determination of Methane Total Content in the Atmosphere by Spectroscopic Methods,” Izv. Vuzov, Fiz. 53(9–3) (2010).

    Google Scholar 

  12. J. Fontenla, O. R. White, P. A. Fox, E. H. Avertt, and R. L. Kurucz, “Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum,” Astrophys. J. 518(1), 480–500 (1999).

    Article  ADS  Google Scholar 

  13. A. Nikitin, O. Lyulin, S. Mikhailenko, V. Perevalov, N. Filippov, I. Grigoriev, I. Morino, T. Yokoba, R. Kumazawa, and T. Watanabe, “GOSAT-2009 Methane Spectral List in the 5550–6236 cm−1 Range,” J. Quant. Spectrosc. Radiat. Transfer. 111(15), 2211–2224 (2010).

    Article  ADS  Google Scholar 

  14. O. M. Lyulin, S. Kassi, K. Sung, L. R. Brown, and A. Campargue, “Determination of the Low Energy Values of 13CH4 Transitions in the 2ν3 Region near 1.66 μm from Absorption Spectra at 296 and 81 K,” J. Mol. Spectrosc. 261(2), 91–100 (2010).

    Article  ADS  Google Scholar 

  15. Wang Le, S. Kassi, and A. Campargue, “Temperature Dependence of the Absorption Spectrum of CH4 by High Resolution Spectroscopy at 81 K: (I) The Region of the 2ν3 Band at 1.66 μm,” J. Quant. Spectrosc. Radiat. Transfer. 111(9), 1130–1140 (2010).

    Article  ADS  Google Scholar 

  16. A. Campargue, Wang Le, D. Mondelain, S. Kassi, B. Bezard, E. Lellouch, A. Coustenis, Catherine de Bergh, M. Hirtzig, and P. Drossart, “An Empirical Line List for Methane in the 1.26–1.71 μm Region for Planetary Investigations (T = 80–300 K). Application to Titan,” Icarus 219(1), 110–128 (2012).

    Article  ADS  Google Scholar 

  17. http://www.icb.cnrs.fr/OMR/SMA/SHTDS/STDS.html

  18. J. P. Champion, M. Loete, and G. Pierre, Spherical Top Spectra, Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, Ed. by K. Rao and A. Weber (Academic Press Inc, San Diego, 1992).

  19. V. Boudon, J. P. Champion, T. Gabard, M. Loete, F. Michelot, G. Pierre, M. Rotger, Ch. Wenger, and M. Ray, “Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Spectra of Molecules Pertaining to Various Point Groups,” J. Mol. Spectrosc. 228(2), 620–634 (2004).

    Article  ADS  Google Scholar 

  20. V. A. Kapitanov, Yu. N. Ponomarev, I. S. Tyryshkin, and A. P. Rostov, “Two-Channel Opto-Acoustic Diode Laser Spectrometer and Fine Structure of Methane Absorption Spectra in 6070–6180 cm−1 Region,” Spectrochimica Acta, Part A 66(4–5), 811–818 (2007).

    Article  ADS  Google Scholar 

  21. V. A. Kapitanov, K. Yu. Osipov, A. E. Protasevich, and Yu. N. Ponomarev, “Collisional Parameters of N2 Broadened Methane Lines in the R9 Multiplet of the 2ν3 Band. Multispectrum Fittings of the Overlapping Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer. 113(16), 1985–1992 (2012).

    Article  ADS  Google Scholar 

  22. K. Yu. Osipov, A. E. Protasevich, V. A. Kapitanov, and Ya. Ya. Ponurovskii, “Collision Parameters of N2-Broadened Methane Lines in R5 Multiplet of 2ν3 Band. Multispectrum Fitting of Overlapping Spectral Lines,” Appl. Phys., B 106(3), 725–732 (2012).

    Article  ADS  Google Scholar 

  23. C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure Broadening in the 2ν3 Band of Methane and Its Implication on Atmospheric Retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).

    Article  ADS  Google Scholar 

  24. A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient Technique for Line-by-Line Calculating the Transmittance of the Absorbing Atmosphere,” Atmos. Ocean. Opt. 8(10), 847–850 (1995).

    Google Scholar 

  25. http://www.atm.ox.ac.uk/group/mipas/species/ch4.html

  26. http://www.remotesensing.ru/fts_sta.html

  27. K. G. Gribanov, V. I. Zakharov, S. A. Beresnev, N. V. Rokotyan, V. A. Poddubnyi, P. A. Chistyakov, G. G. Skorik, and V. V. Vasin, “Sensing HDO/H2O in the Ural’s Atmosphere Using Ground-Based Measurements of IR Solar Radiation with a High Spectral Resolution,” Atmos. Ocean. Opt. 24(4), 369–372 (2011).

    Article  Google Scholar 

  28. N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, J. Jouzel, T. Warneke, and J. Notholt, “The possibility of Atmospheric Remote Sensing of Carbon Gases Isotopologues Using Ground-Based High-Resolution FTIRs,” Opt. Atmosf. Okeana 26(1), 46–51 (2013).

    Google Scholar 

  29. http://kurucz.harvard.edu/sun/irradiance2008/

  30. H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, The 2ν3 Band of CH4 Revisited with Line Mixing: Consequences for Spectroscopy and Atmospheric Retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transfer. 111(10), 1344–1356 (2010).

    Article  ADS  Google Scholar 

  31. A. E. Protasevich, Certificate of State Registration of the Program for ECM, No. 2011612390 (2011).

    Google Scholar 

  32. A. S. Pine, “Line Mixing Sum Rules for the Analysis of Multiplet Spectra,” J. Quant. Spectrosc. Radiat. Transfer. 57(2), 145–155 (1997).

    Article  ADS  Google Scholar 

  33. K. Yu. Osipov, V. A. Kapitanov, A. E. Protasevich, T. Yu. Chesnokova, and Yu. N. Ponomarev, “The Comparison of Experimental Line Profile Parameters of the CH43 Band R9 Multiplet Absorption,” in Abstracts of International Workshop: Spectroscopy of Methane and Derived Molecules for Atmospheric and Planetary Applications, Dole, France, 26–28 November 2012, p. 52.

  34. T. Yu. Chesnokova, K. Yu. Osipov, K. G. Gribanov, V. I. Zakharov, and K. M. Firsov, “Simulation of the Atmospheric Solar Spectra with Different CH4 Absorption Line Profiles in the 1.6–1.7 μm Spectral Region,” in Abstracts of International Workshop: Spectroscopy of methane and derived molecules for atmospheric and planetary applications, Dole, France, 26–28 November 2012, p. 22.

  35. V. P. Kochanov, “Line Profiles for the Description of Line Mixing, Narrowing, and Dependence of Relaxation Constants on Speed,” J. Quant. Spectrosc. Radiat. Transfer. 112(12), 1931–1941 (2011).

    Article  ADS  Google Scholar 

  36. C. Frankenberg, P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben, “Tropical Methane Emissions: A Revised View from SCIAMACHY Onboard ENVISAT,” Geophys. Res. Lett. 35, L15811 (2008).

    Article  ADS  Google Scholar 

  37. A. Jenouvrier, L. Daumont, L. Regali-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer. 105(2), 326–355 (2007).

    Article  ADS  Google Scholar 

  38. T. Yu. Chesnokova, B. A. Voronin, Yu. V. Voronina, K. G. Gribanov, V. I. Zakharov, and K. M. Firsov, “Simulation of the High Resolution Atmospheric Solar Spectra in the 1.6–2.4 μm Spectral Region,” in Proc. XVII Int. Sympos. HighRus-2012 (Publishing House of IAO SB RAS, Tomsk, 2012), pp. 59–62.

    Google Scholar 

  39. A. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An Upper Limit for Water Dimer Absorption in the 750 nm Spectral Region and a Revised Water Line List,” Atmos. Chem. Phys. 11(9), 4273–4287 (2011).

    Article  ADS  Google Scholar 

  40. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A High Accuracy Computed Water Line List—BT2,” Mon. Not. Roy. Astron. Soc. 368(3), 1087–1094 (2006).

    Article  ADS  Google Scholar 

  41. V. A. Kapitanov and Yu. N. Ponomarev, “High Resolution Ethylene Absorption Spectrum between 6035 and 6210 cm−1,” Appl. Phys., B 90(2), 235–241 (2008).

    Article  ADS  Google Scholar 

  42. M. A. Loroño Gonzalez, V. Boudon, M. Loete, M. Rotger, M.-T. Bourgeois, K. Didriche, M. Herman, V. A. Kapitanov, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and T. M. Petrova, “High-Resolution Spectroscopy and Preliminary Global Analysis of C-H Stretching Vibrations of C2H4 in the 3000 and 6000 cm−1 Regions,” J. Quant. Spectrosc. Radiat. Transfer. 11(15), 2265–2278 (2010).

    Article  ADS  Google Scholar 

  43. A. Berk, G. P. Anderson, P. K. Acharya, and E. P. Shettle, MODTRAN5.2.0.0 User’s Manual (SPECTRAL SCIENCES, INC, 2008).

    Google Scholar 

  44. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions,” Solar Phys. 214(1), 1–22 (2003).

    Article  ADS  Google Scholar 

  45. http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.Yu. Chesnokova, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesnokova, T.Y. Spectroscopic factors, influencing the accuracy of the atmospheric radiative transfer simulation in the methane absorption bands in the near infrared region. Atmos Ocean Opt 26, 417–426 (2013). https://doi.org/10.1134/S1024856013050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013050060

Keywords

Navigation