Skip to main content

High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells

Abstract

A high-sensitive spectrometer operating in the range 20000–9000 cm−1 with an absorption sensitivity of 1 × 10−8 cm−1 and a spectral resolution of 0.05 cm−1, based on the Bruker IFS-125M Fourier spectrometer with a short multipass cell, is described. The high sensitivity of the spectrometer was gained through the use of the multipass absorption cell (a base length of 60 cm) with a high transmission (the ratio of the collecting mirror diameter to the base length is 1 : 4) and a high intensity light source.

The comparison of the recorded spectra with experimental and theoretical water vapor spectra shows that the spectrometer reliably detects absorption lines of natural isotopomers of water. The threshold sensitivity of the spectrometer was found from the signal/noise ratio and recorded water lines of minimal intensities.

This is a preview of subscription content, access via your institution.

References

  1. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. and Radiat. Transfer 110(9–10), 533–572 (2009).

    ADS  Article  Google Scholar 

  2. S. S. Vasil’chenko, V. I. Serdyukov, and L. N. Sinitsa, “Spectral System for Measuring Gaseous Atmospheric Components with a Fiber-Optic Tracking System, and Certain Analysis Results of Atmospheric Spectra,” Atmos. Ocean. Opt. 26(3), 227–231 (2013).

    Article  Google Scholar 

  3. L. N. Sinitsa, High-Resolution Spectroscopy Techniques (Publishing House of Tomsk State University, Tomsk, 2006) [in Russian].

    Google Scholar 

  4. M. V. Tonkov, “Fourier-Transform Spectroscopy-Maximum Information for Minimal Time,” Soros. Obrazovat. Zh. 7(1), 83–88 (2001).

    Google Scholar 

  5. C. Oudot, Le. Wang, and X. Thomas, P. Von Der Heyden, L. Daumont, and L. Régalia, “Intensity Measurements of H2 16O Lines in the Spectral Region 8000–9350 cm−1,” J. Mol. Spectrosc. 262(1), 22–29 (2010).

    ADS  Article  Google Scholar 

  6. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and S. A. Sulakshin, “A Fourier-Spectrometer with a 30-m Base-Length Multipass Cell for the Study of Weak Absorption Spectra of Atmospheric Gases,”. Atmos. Ocean. Opt. 24(6), 593–595 (2011).

    Article  Google Scholar 

  7. H. J. Bernstein and G. Herzberg, “Rotation-Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths,” J. Chem. Phys. 16(1), 30–38 (1948).

    ADS  Article  Google Scholar 

  8. Yu. A. Poplavskii and V. I. Serdyukov, “Light-Emitting Diode Fourier-Transform Spectrometry of Gases in the Visible Range,” in Proc. of the 14th Intern. Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”, Tomsk, 2009 (Tomsk, 2009) [in Russian].

    Google Scholar 

  9. J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “H2O: Line Positions and Intensities Between 9500 and 11500 cm−1. The Interacting Vibrational States (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67(11) 1065–1084 (1989).

    ADS  Article  Google Scholar 

  10. D. Lisak and J. T. Hodges, “Low-Uncertainty H2O Line Intensities for the 930-nm Region,” J. Mol. Spectrosc. 249(1), 6–13 (2008).

    ADS  Article  Google Scholar 

  11. R. Tolchenov and J. Tennyson, “Water Line Parameters from Refitted Spectra Constrained by Empirical Upper State Levels: Study of the 9500–14500 cm−1 Region,” J. Quant. Spectrosc. and Radiat. Transfer 109(8), 559–568 (2008).

    ADS  Article  Google Scholar 

  12. L. R. Brown, R. A. Toth, and M. Dulick, “Empirical Line Parameters of H2 16O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients,” J. Mol. Spectrosc. 212(1), 57–82 (2002).

    ADS  Article  Google Scholar 

  13. R. N. Tolchenov, O. Naumenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A. C. Vandael, “Water Vapour Line Assignments in the 9250–26000 cm−1 Frequency Range,” J. Mol. Spectrosc. 233(1), 68–76 (2005).

    ADS  Article  Google Scholar 

  14. N. F. Zobov, S. V. Shirin, R. I. Ovsyannikov, O. L. Polyansky, R. J. Barber, J. Tennyson, P. F. Bernath, M. Carleer, R. Colin, and P.-F. Coheur, “Spectrum of Hot Water in the 4750–13000 cm−1 Wavenumber Range (0.769–2.1 μm),” Mon. Not. Roy. Astron. Soc. 387(3), 1093–1098 (2008).

    ADS  Article  Google Scholar 

  15. M. F. Merienne, A. Jenouvrier, C. Hermans, A. C. Vandaele, M. Carleer, C. Clerbaux, P. F. Coheur, R. Colin, S. Fally, and M. Bach, “Water Vapor Line Parameters in the 13000–9250 cm−1 Region,” J. Quant. Spectrosc. and Radiat. Transfer 82(1–4), 99–117 (2003).

    ADS  Article  Google Scholar 

  16. H. Partridge and D. W. Schwenke, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive Ab Initio Calculations and Experimental Data,” J. Chem. Phys. 106(11), 4618–4639 (1997).

    ADS  Article  Google Scholar 

  17. http://spectra.iao.ru/1280x866/ru/mol/

  18. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A High Accuracy Computed Water Line List—BT2,” Mon. Not. Roy. Astron. Soc. 368(3), 1087–1094 (2006).

    ADS  Article  Google Scholar 

  19. J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Cseszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, S. Rothman, A. C. Vandaele, N. F. Zobov, A. R. Derzi, C. F. Csaba, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, and I. I. Misus, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part III. Energy Levels and Transition Wavenumbers for H2 16O,” J. Quant. Spectrosc. and Radiat. Transfer 117, 29–58 (2013).

    ADS  Article  Google Scholar 

  20. L. P. Vorob’eva, B. A. Voronin, and O. V. Naumenko, “Assignment of 9250–13000 cm−1 Water Vapor Absorption Spectrum,” Atmos. Ocean. Opt. 6(12), 961–966 (2003).

    Google Scholar 

  21. A. Campargue, Le Wang, D. Mondelain, S. Kassi, B. Bezard, E. Lellouch, A. Coustenis, C. de Bergh, M. Hirtzig, and P. Drossart, “An Empirical Line List for Methane in the 1.26–1.71 μm Region for Planetary Investigations (T = 80–300 K). Application to Titan,” Icarus 219(1), 110–128 (2012).

    ADS  Article  Google Scholar 

  22. S. Beguier, S. Mikhailenko, and A. Campargue, “The Absorption Spectrum of Water between 13540 and 14070 cm−1: ICLAS Detection of Weak Lines and a Complete Line List,” J. Mol. Spectrosc. 265(2) 106–109 (2011).

    ADS  Article  Google Scholar 

  23. http://www.bruker.de, Manual White-Cell.doc.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Serdyukov, L.N. Sinitsa, S.S. Vasil’chenko, B.A. Voronin, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Serdyukov, V.I., Sinitsa, L.N., Vasil’chenko, S.S. et al. High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells. Atmos Ocean Opt 26, 329–336 (2013). https://doi.org/10.1134/S1024856013040131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013040131

Keywords

  • Oceanic Optic
  • Threshold Sensitivity
  • Base Length
  • Fourier Spectrometer
  • Cavity Ring Down Spectroscopy