Skip to main content

Complex monitoring of the state of sea water basins by optical methods. Part 3. Recording of dynamic processes by slicks on the sea surface

Abstract

This is the third in a series of papers devoted to the development of instruments and techniques for rapid and complex analysis of the ecological status of coastal waters by optical methods. Capabilities of shore-based optical systems to map and determine the dynamic characteristics of ocean eddies and internal waves are shown. The efficiency of the maximum cross correlation method for retrieving the flow velocity field in the vortex body and the phase velocities of internal waves from optical images of the sea surface is discussed.

This is a preview of subscription content, access via your institution.

References

  1. S. A. Ermakov, I. A. Sergievskaya, and L. A. Gushchin, “Films on the Sea Surface and Their Remote Sounding,” in Modern Problems of Remote Sounding of the Earth from Space (Azbuka-2000, Moscow, 2006) [in Russian].

    Google Scholar 

  2. S. A. Ermakov, Influence of Films on the Dynamics of Gravity-Capillary Waves (IPF RAN, Nizhniy Novgorod, 2010) [in Russian].

    Google Scholar 

  3. S. Grodsky, V. Kudryavtsev, and A. Ivanov, “Quasisynchronous Observations of the Gulf Stream Frontal Zone with Almaz-1 SAR and Measurements Taken on Board the R/V Akademik Vernadsky,” The Global Atmos. and Ocean Syst., No. 7, 249–272 (2000).

    Google Scholar 

  4. A. Yu. Ivanov and A. I. Ginzburg, “Oceanic Eddies in Synthetic Aperture Radar Images,” Proc. Indian Acad. Sci. (Earth Planet. Sci.) 111(3), 281–295 (2002).

    ADS  Google Scholar 

  5. Yu. N. Kul’chin, O. A. Bukin, O. G. Konstantinov, S. S. Voznesenskii, A. N. Pavlov, E. L. Gamayunov, A. Yu. Maior, S. Yu. Stolyarchuk, A. A. Korotenko, and A. Yu. Popik, “Complex Monitoring of the State of Sea Water Basins by Optical Methods. Part 1. The Concept of Constructing the Multilevel Measurement Systems for Ecological Monitoring of Coastal Water Basins,” Atmos. Ocean. Opt. 25(6), 446–450 (2012).

    Article  Google Scholar 

  6. O. G. Konstantinov and A. N. Pavlov, “Complex Monitoring of the State of Sea Water Basins by Optical Methods. Part 2. Sea Surface Pollution Registration,” Atmos. Ocean. Opt. 26(4), 293–299 (2013).

    Google Scholar 

  7. A. Yu. Ivanov, “Oil Pollution of Sea in Radar Images from “KOSMOS-1870” and “ALMAZ-1”, Issled. Zemli iz Kosmosa, No. 6, 73–86 (1977).

    Google Scholar 

  8. H. A. Espedal, O. M. Johannessen, J. A. Johannessen, E. Dano, D. Lyzenga, and J. C. Knulst, “COASTWATCH’95 ERS 1/2 SAR Detection of Natural Film on the Ocean Surface,” Geophys. Res., C 92(11), 24969–24982 (1998).

    ADS  Article  Google Scholar 

  9. A. Yu. Ivanov, “Slicks and Films in Space Radar Images,” Issled. Zemli iz Kosmosa, No. 3, 73–96 (2007).

    Google Scholar 

  10. T. Bocharova, V. Byfield, M. Gade, J. da Silva, S. Ermakov, A. Kostyanoi, O. Lavrova, R. Mamedov, and S. Stanichnyi, “MOPED International Project: Monitoring of Oil Pollution of the Sea Surface: Integration of Data of Different Types from Many Sensors and Satellites,” in Modern Problems of Remote Sounding of the Earth from Space. Physical Grounds, Techniques and Technologies of Environmental Monitoring of Potentially Dangerous Phenomena and Objects (Azbuka-2000, Moscow, 2008), Vol. 2, Is. 5 [in Russian].

    Google Scholar 

  11. O. Yu. Lavrova, “Slicks as Indicators of Vortex Activity in the Coastal Area,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 1(2), 118–123 (2005).

    Google Scholar 

  12. S. A. Ermakov and S. G. Salashin, “Modulation of Gravity-Capillary Waves in the Filed of Internal Waves,” Izv. AN SSSR, Fiz. Atmosf. Okeana 20(5), 394–404 (1984).

    Google Scholar 

  13. S. A. Ermakov and E. N. Pelinovsky, “Variation of the Spectrum of Wind Ripple on Coastal Waters Under the Action of Internal Waves,” Dyn. Atmos. Oceans 8(1), 95–100 (1984).

    ADS  Article  Google Scholar 

  14. O. Yu. Lavrova, M. I. Mityagina, and K. D. Sabinin, “Probable Mechnisms of Internal Wave Generation in the North-West Part of the Black Sea,” in Modern Problems of Remote Sounding of the Earth from Space. Physical Grounds, Techniques and Technologies of Environmentsl Monitoring of Potentially Dangerous Phenomena and Objects (Azbuka-2000, Moscow, 2008), Vol. 2, Is. 5 [in Russian].

    Google Scholar 

  15. P. Clemente-Colon and X.-H. Yan, “Low-Backscatter Ocean Features in Synthetic Aperture Radar Imagery,” Johns Hopkins Appl. Technol. Digest 21(1), 116–121 (2000).

    Google Scholar 

  16. L. B. Neronskii, V. F. Mikhailov, and I. V. Bragin, Microwave Instruments for Remote Sounding of the Earth’s Surface and Atmosphere. Synthetic Aperture Radars (SPbGUAP, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  17. W. J. Emery, A. C. Thomas, M. J. Collins, W. R. Crawford, and D. L. Mackas, “An Objective Method for Computing Advective Surface Velocities from Sequential Infrared Satellite Images,” J. Geophys. Res., C 91(11), 12865–12878 (1986).

    ADS  Article  Google Scholar 

  18. R. M. Ninnis, W. J. Emery, and M. J. Collins, “Automated Extraction of Pack Ice Motion from Advanced Very High Resolution Radiometry,” J. Geophys. Res., C 91(9), 10725–10734 (1986).

    ADS  Article  Google Scholar 

  19. M. M. Bowen, W. J. Emery, J. Wilken, P. C. Tildesley, I. J. Barton, and R. Knewtson, “Extracting Multi-Year Surface Flows from Sequential Thermal Imagery Using the Maximum Cross Correlation Technique,” J. Atmos. Ocean. Technol. 19(10), 1665–1676 (2002).

    ADS  Article  Google Scholar 

  20. R. I. Crocker, D. K. Matthews, W. J. Emery, and D. Baldwin, “Computing Coastal Ocean Surface Flows from Infrared and Ocean Color Satellite Imagery,” Geosci. and Remote Sens. 45(2), 435–447 (2007).

    ADS  Article  Google Scholar 

  21. K. V. Konyaev and K. D. Sabinin, Waves inside the Ocean (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  22. A. S. Monin and V. P. Krasitskii, Phenomena on the Ocean Surface (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  23. K. D. Sabinin and A. N. Serebryanyi, “‘Hot Spots’ in the Field of Internal Waves in the Ocean,” Acoust. J. 53(3), 357–380 (2007).

    Google Scholar 

  24. A. N. Serebryanyi, “Nonlinear Effects in Internal Waves on the Shelf,” Izv. AN CCCP, Fiz. Atmosf. Okeana 26(3), 285–293 (1990).

    Google Scholar 

  25. S. M. Flatte and G. Rovner, “Calculations of Internal-Wave-Induced Fluctuations in Ocean-Acoustic Propagation,” J. Acoust. Soc. Am. 108(2), 526–534 (2000).

    ADS  Article  Google Scholar 

  26. V. G. Bondur, “Aerospace Methods in Modern Oceanology,” in New Ideas in Oceanology. Vol. 1. Physics, Chemistry, and Biology (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  27. A. N. Serebryanyi, “Internal Waves in the Coastal Area of a Tidal Sea,” Okeanologiya 25(5), 744–751 (1985).

    Google Scholar 

  28. J. C. Da Silva, S. A. Ermakov, and I. S. Robinson, “The Role of Surface Films in SAR Signatures of Internal Waves on the Shelf. III. Mode transition,” J. Geophys. Res., C 105(10), 24089–24104 (2000)

    Article  Google Scholar 

  29. V. V. Bakhanov and V. I. Talanov, “Transformation of Nonlinear Surface Waves in the Field of Inhomogeneous Flows,” in Ocean Surface Layer. Physical Processes and Remote Sounding, Ed. by E. N. Pelinovskii and V. E. Talinov, and (IAP RAS, Nizhniy Novgorod, 1999), Vol. 1, 81–106 [in Russian].

    Google Scholar 

  30. S. A. Ermakov, I. A. Sergievskaya, E. M. Zuikova, S. V. Kiyashko, and Yu. B. Shchegol’kov, “Effect of Variation in the Doppler Frequency Shift of Radar Signals in the Presence of Organic Films on the Sea Surface,” Dokl. Russ. Acad. Sci. Earth Sci. 388(1), 49–52 (2003).

    Google Scholar 

  31. K. V. Konyaev and K. D. Sabinin, Waves inside the Ocean (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  32. A. K. Liu, S. Y. Chang, M.-K. Hsu, and N. K. Liang, “Evolution of Nonlinear Internal Waves in East and South China Seas,” J. Geophys. Res., C 103(4), 7995–8008 (1998).

    ADS  Article  Google Scholar 

  33. M.-K. Hsu and A. K. Liu, “Nonlinear Internal Waves in the South China Sea,” Can. J. Remote Sens. 26(2), 72–81 (2000).

    Google Scholar 

  34. N. F. Vel’tishchev and V. M. Stepanenko, Meteorological Processes (MGU, Moscow, 2006) [in Russian].

    Google Scholar 

  35. V. A. Dubina, V. K. Fishchenko, O. G. Konstantinov, and L. M. Mitnik, “Integration of Satellite Data and Ground-Based Video Surveillances in Monitoring Systems,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 8(3), 214–222 (2011).

    Google Scholar 

  36. V. Novotryasov and O. G. Konstantinov, “Surface Manifestations of Internal Waves in Optical Images of the Coastal Area of the Sea of Japan,” Atm. Ocean. Phys. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.G. Konstantinov, A.N. Pavlov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantinov, O.G., Pavlov, A.N. Complex monitoring of the state of sea water basins by optical methods. Part 3. Recording of dynamic processes by slicks on the sea surface. Atmos Ocean Opt 26, 300–307 (2013). https://doi.org/10.1134/S1024856013040076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013040076

Keywords

  • Soliton
  • Internal Wave
  • Synthetic Aperture Radar
  • Wind Wave
  • Anticyclonic Eddy