Skip to main content

Experimental estimation of Raman lidar sensitivity in the middle UV


The experimental results of remote detection of vapors of some atmospheric chemical compounds using a Raman lidar system with a narrow-line excimer KrF laser and a multichannel spectral analyzer, based on a diffraction spectrograph and an intensified CCD camera, are presented. The system sensitivity is estimated for a sounding range of 6–10 m. Using additional means for suppressing the intense Raman bands of N2 and O2 molecules, a detection threshold of 1 ppm is reached. Base rovibrational Raman bands of oxygen and nitrogen and their first overtones are observed during experiments on noise level estimation and Raman spectra recording in the atmosphere. The absence of overlapping of fluorescence and Raman signals is confirmed experimentally.

This is a preview of subscription content, access via your institution.


  1. Laser Control of the Atmosphere, Ed. by E.D. Khinkli (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  2. R. M. Mezheris, Laser Remote Sensing. Fundamentals and Applications (Wiley, New York, 1984).

    Google Scholar 

  3. S. V. Alimov, O. B. Danilov, A. P. Zhevlakov, S. V. Kashcheev, D. V. Kosachev, A. A. Mak, S. B. Petrov, and V. I. Ustyugov, “Aviation Raman Lidar with Ultraspectral Resolution,” J. Opt. Technol. 76(4), 199–207 (2009).

    Article  Google Scholar 

  4. W. S. Heaps and J. Burris, “Airborne Raman Lidar,” Appl. Opt. 35(36), 7128–7135 (1996).

    ADS  Article  Google Scholar 

  5. I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “Arctic Lidar of High Spectral Resolution,” Optika Atmosf. Okeana. 25(1), 94–102 (2012).

    Google Scholar 

  6. M. A. Buldakov, I. I. Matrosov, D. V. Petrov, and A. A. Tikhomirov, “Raman Gas-Analyzer for Analyzing Environmental and Technogenic Gas Media,” Atmos. Ocean. Opt. 25(4), 298–303 (2012).

    Article  Google Scholar 

  7. S. K. Sharma, A. K. Misra, P. G. Lucey, S. M. Angel, and C. P. Mckay, “Remote Pulsed Raman Spectroscopy of Inorganic and Organic Materials to a Radial Distance of 100 Meters,” Appl. Spectrosc. 60(8), 871–876 (2006).

    ADS  Article  Google Scholar 

  8. M. D. Ray and A. J. Sedlacek, “Ultraviolet Mini-Raman Lidar for Stand-Off, In-Situ Identification of Chemical Surface Contaminants,” Rev. Sci. Inst. 71(9), 3485–3489 (2000).

    ADS  Article  Google Scholar 

  9. J. S. Arthur and D. R. Mark, “Short-Range, Non-Contact Detection of Surface Contamination Using Raman Lidar,” Proc. SPIE-Int. Soc. Opt. Eng. 4577, 95–104 (2001).

    Google Scholar 

  10. M. A. Buldakov, B. V. Korolev, I. I. Matrosov, and T. N. Popova, “Overtones Bands in Raman Spectra of Nitrogen and Oxygen,” Opt. Spectrosk. 63(4), 775–777 (1987).

    Google Scholar 


Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bobrovnikov, S.M., Gorlov, E.V. & Zharkov, V.I. Experimental estimation of Raman lidar sensitivity in the middle UV. Atmos Ocean Opt 26, 320–325 (2013).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Raman Spectrum
  • Lidar
  • Raman Band
  • Photon Counting Mode
  • Container Volume