Skip to main content
Log in

Bit error rate in free-space optical communication systems with a partially coherent transmitting beam

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The influence of the degree of transmitting beam coherence on the bit error rate in free-space optical communication systems is studied. It is found that there are optimal values of the output power and degree of coherence of a transmitter optical beam, defined by the Fried radius, for all types of propagation paths (horizontal, vertical, or inclined) and different degrees of manifestation of turbulent effects. The optimal degree of coherence can be determined from the calculated BER minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham; Washington, DC, 2001).

    Book  Google Scholar 

  2. A. K. Majumdar, “Free-Space Laser Communication Performance in the Atmospheric Channel,” J. Opt. Fiber. Commun. Rep. 2(4), 345–396 (2005).

    Article  Google Scholar 

  3. D. L. Fried, “Aperture Averaging of Scintillation,” J. Opt. Soc. Amer. 57(2), 169–175 (1967).

    Article  ADS  Google Scholar 

  4. J. C. Ricklin and F. M. Davidson, “Atmospheric Optical Communication with a Gaussian Schell Beam,” J. Opt. Soc. Amer., A 20(5), 856–866 (2003).

    Article  ADS  Google Scholar 

  5. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a Partially Coherent Gaussian Beam in Atmospheric Turbulence with Application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

    Article  ADS  Google Scholar 

  6. J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric Channel Effects on Free-Space Laser Communication,” J. Opt. Fiber. Commun. Rep. 3(2), 111–158 (2006).

    Article  Google Scholar 

  7. P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, “Optimized Multiemitter Beams for Free-Space Optical Communications through Turbulent Atmosphere,” Opt. Lett. 32(8), 885–887 (2007).

    Article  ADS  Google Scholar 

  8. D. G. Voelz and X. Xiao, “A Brief Review of Spatially Partially Coherent Beams for FSO Communications,” Proc. SPIE. 7200, 72000 (2009).

  9. X. Xiao and D. G. Voelz, “On-Axis Probability Density Function and Fade Behavior of Partially Coherent Beams Propagating Through Turbulence,” Appl. Opt. 48(2), 167–175 (2009).

    Article  ADS  Google Scholar 

  10. D. G. Voelz and X. Xiao, “Metric for Optimizing Spatially Partially Coherent Beams for Propagation through Turbulence,” Opt. Eng. 48(3), 036001 (2009).

    Article  ADS  Google Scholar 

  11. C. Chen, H. Yang, X. Feng, and H. Wang, “Optimization Criterion for Initial Coherence Degree of Lasers in Free-Space Optical Links through Atmospheric Turbulence,” Opt. Lett. 34(4), 419–421 (2009).

    Article  ADS  Google Scholar 

  12. D. K. Borah and D. G. Voelz, “Spatially Partially Coherent Beam Parameter Optimization for Free Space Optical Communications,” Opt. Exp. 18(20) (2010).

    Google Scholar 

  13. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical Model for the Irradiance Probability Density Function of a Laser Beam Propagating through Turbulent Media,” Opt. Eng. 40(8), 1554–1562 (2001).

    Article  ADS  Google Scholar 

  14. B. Sklyar, Digital Communications. Theoretical Grounds and Practical Applications (Izdatel’skii dom “Vil’yams”, Moscow, 2007) [in Russian].

    Google Scholar 

  15. J. Proakis, Digital Communications (McGraw-Hill, New York, 1995), 3rd ed.

    Google Scholar 

  16. R. K. Tyson, “Bit-Error Rate for Free-Space Adaptive Optics Laser Communications,” J. Opt. Soc. Amer., A 19(4), 753–758 (2002).

    Article  ADS  Google Scholar 

  17. S. M. Flatte, C. Bracher, and G.-Y. Wang, “Probability Density Functions of Irradiance for Waves in Atmospheric Turbulence Calculated by Numerical Simulation,” J. Opt. Soc. Amer., A 11(7), 2080–2092 (1994).

    Article  ADS  Google Scholar 

  18. J. H. Churnside and R. J. Hill, “Probability Density of Irradiance Scintillations for Strong Path-Integrated Refractive Turbulence,” J. Opt. Soc. Amer., A 4(4), 727–733 (1987).

    Article  ADS  Google Scholar 

  19. R. J. Hill and R. G. Frehlich, “Probability Distribution of Irradiance for the Onset of Strong Scintillation,” J. Opt. Soc. Amer., A 14(7), 1530–1540 (1997).

    Article  ADS  Google Scholar 

  20. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham; Washington, DC, 2001).

    Book  Google Scholar 

  21. M. Nakagami, The M Distribution—a General Formula of Intensity Distribution of Rapid Fading, Statistical Methods in Radio Wave Propagation, Ed. by W. C. Hoffman (Pergamon, New York, 1960).

  22. http://ru.wikipedia.org/wiki/Gamma-raspredelenie.

  23. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics (Macmillan, New York, 1978).

    Google Scholar 

  24. M. H. Mahdieh and M. Pournoury, “Atmospheric Turbulence and Numerical Evaluation of Bit Error Rate (BER) in Free-Space Communication,” Opt. & Laser Technol. 42(1), 55–60 (2010).

    Article  ADS  Google Scholar 

  25. V. V. Kolosov and A. V. Kuzikovskii, “Phase Compensation of Refraction Distortions of Partly Coherent Beams,” Kvant. Elektron. 8(3), 490–494 (1981).

    ADS  Google Scholar 

  26. M. A. Vorontsov and V. V. Kolosov, “Target-in-the-Loop Beam Control: Basic Considerations for Analysis and Wavefront Sensing,” J. Opt. Soc. Amer., A 22(1), 126–141 (2005).

    Article  ADS  Google Scholar 

  27. P. A. Konyaev, E. A. Tartakovskii, and G. A. Filimonov, “Computer Simulation of Optical Wave Propagation with the Use of Parallel Programming,” Atmos. Ocean. Opt. 24(5), 425–431 (2011).

    Article  Google Scholar 

  28. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the Subharmonic Method in Problems of Computer Simulation of Laser Beam Propagation in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).

    Article  Google Scholar 

  29. D. A. Marakasov and D. S. Rychkov, “Method for Calculating Moments of the Wigner Distribution Function of Laser Beams in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 25(2), 127–129 (2012).

    Article  Google Scholar 

  30. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  31. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Modern Problems of Atmospheric Optics. Optics of Turbulent Atmosphere, Ed. by V. E. Zuev (Gidrometeoizdat, Leningrad, 1988) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Vorontsov, V.V. Dudorov, M.O. Zyryanova, V.V. Kolosov, G.A. Filimonov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorontsov, M.A., Dudorov, V.V., Zyryanova, M.O. et al. Bit error rate in free-space optical communication systems with a partially coherent transmitting beam. Atmos Ocean Opt 26, 185–189 (2013). https://doi.org/10.1134/S1024856013030159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013030159

Keywords

Navigation