Atmospheric and Oceanic Optics

, Volume 26, Issue 3, pp 227–232 | Cite as

Spectral system for measuring gaseous atmospheric components with a fiber-optic tracking system, and certain analysis results of atmospheric spectra

  • S. S. Vasil’chenko
  • V. I. Serdukov
  • L. N. Sinitsa
Optical Instrumentation


A spectral system for measuring atmospheric gaseous components based on a Brucker IFS 125M Fourier Transform Spectrometer (FTS) with a fiber-optic tracker is described. Experimental results on the determination of CO2 and H2O contents in the atmosphere above Tomsk from the analysis of atmospheric transmission spectra of solar radiation, recorded with the FTS, are presented. The atmospheric transmission spectra are compared for solar zenith angles of 34° and 78°, which show a significant quantity of oxygen collision complexes in the surface air layer.


Solar Radiation Oceanic Optic Solar Zenith Angle Fourier Spectrometer Spectral System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ya. Kondrat’ev, “Global Climate Changes: Facts, Assumptions, and Prospects of Developments,” Atmos. Ocean. Opt. 15(10), 771–783 (2002).Google Scholar
  2. 2.
    A. B. Uspenskii, “Remote Atmospheric Sounding Using Sattellite Fourier Spectrometers,” in Intern. Symp. “Methematical Methods in Geophysics” (Institute for Computational Mathematics and Mathematical Geophysics, Novosibirsk, 2003), Part 2, pp. 579–584 [in Russian].Google Scholar
  3. 3.
    C. Clerbaux, M. George, S. Turquety, et al., “CO Measurements from the ACE-FTS Satellite Instrument: Data Analysis and Validation Using Ground-Based, Airborne and Spaceborne Observations,” Atmos. Chem. Phys. 8(9), 2569–2594 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Schneider and F. Hase, “Ground-Based FTIR Water Vapour Profile Analyses,” Atmos. Meas. Techn. 2(2), 609–619 (2009).CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun Photometer for Scientific Monitoring (Instrumentation, Techniques, Algorithms),” Atmos. Ocean. Opt. 14(12), 1067–1074 (2001).Google Scholar
  8. 8.
    S. S. Vasil’chenko, B. A. Voronin, D. S. Emel’yanov, V. I. Serdyukov, L. N. Sinitsa, E. R. Polovtseva, and F. Hase, “Measurements of Concentrations of Atmosheric Gases on the Basis of Analysis of Fourier Spectra of Solar Radiation Absorption,” in Proc. of the XVII Intern. Symp. “Atmospheric and Oceanic Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2011), P. A50–A53 [in Russian].Google Scholar
  9. 9.
    M. Thuillier, D. Hersé, T. Labs, W. Foujols, D. Peetermans, P. Gillotay, C. Simon, and H. Mandel, “The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the Solspec Spectrometer from the Atlas and Eureca Missions,” Sol. Phys. 214(1), 1–22 (2003).ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    H. Naus and U. Wim, “Visible Absorption Bands of the (O2)2 Collision Complex at Pressures below 760 Torr,” Appl. Opt. 38(15), 3423–3428 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Dianov-Klokov and I. P. Malkov, “Oxygen Absorption Spectrum in Clathrate and Double Transitions in the (O2)2 Complex,” Opt. Spektrosk., No. 3, 51–56 (1967).Google Scholar
  13. 13.
    K. Pfeilsticker, F. Erle, and U. Platt, “Absorption of Solar Radiation by Atmospheric O4,” J. Atmos. Sci. 54(7), 933–939 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    Molecular Complexes in Earth’s, Planetary, Cometary, and Interstellar Atmospheres, Ed. by A. Vigasin and Z. Slanina (World Scientific, Singapore, 1998).Google Scholar
  15. 15.
    G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, “Absorption Measurement of Oxygen between 330 and 1140 nm,” J. Geophys. Res., D 95(11), 18577–18582 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, Vi. de Castro, and F. Pirani, “Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2-O2 Dimer,” J. Am. Chem. Soc. 121(46), 10794–10802 (1999).CrossRefGoogle Scholar
  17. 17.
    L. A. Curtis, D. J. Frurip, and M. Blander, “Studies of Molecular Association in H2O and D2O Vapors by Measurement of Thermal Conductivity,” J. Chem. Phys. 71(6), 2703–2711 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    W. Evans, E. Puckrin, D. Dufour, C. Ferguson, K. Walker, C. Boone, and J. Drummond, “Calibration of Instruments for Atmospheric Ozone Measurements II: the ACE FTS and MAESTRO Spectrograph,” in Proc. SPIE—Int. Soc. Opt. Eng. 5151, 184–191 (2003).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. S. Vasil’chenko
    • 1
  • V. I. Serdukov
    • 1
  • L. N. Sinitsa
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations