Atmospheric and Oceanic Optics

, Volume 26, Issue 3, pp 207–213 | Cite as

Control of the dynamics of tropospheric ozone through the stratosphere

  • P. N. Antokhin
  • B. D. Belan
Atmospheric Radiation, Optical Weather, and Climate


We consider two possible mechanisms of stratospheric control of the ozone concentration and dynamics in the troposphere. The first mechanism is implemented through the total-ozone-caused modulation of the ultraviolet radiative flux, incoming to the troposphere and initiating therein the photochemical processes. The second mechanism acts through direct transport of stratospheric ozone, which will “trigger” the photolysis and initiate these same processes of ozone generation, but now in the troposphere. Both of these mechanisms of stratospheric ozone control of the near-ground ozone concentration are shown to be apparent near Tomsk. It is noteworthy that the control via ultraviolet flux determines the amplitude modulation, and the transport from the stratosphere to the troposphere drives the temporal modulation.


Ozone Ozone Concentration Oceanic Optic Total Ozone Tropospheric Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Grewe, “The Origin of Ozone,” Atmos. Chem. Phys. 6(6), 1495–1511 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar
  3. 3.
    P. J. Crutzen and P. H. Zimmermann, “The Changing Photochemistry of the Troposphere,” Tellus 43(4), 136–151 (1991).Google Scholar
  4. 4.
    C. Bruhl and P. J. Crutzen, “On the Disproportional Role of Troposphere Ozone as a Filter against Solar UV-B Radiation,” Geophys. Res. Lett. 16(7), 703–706 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    S. Madronich, “Trends and Predictions in Global UV,” in Global Environ. Change. NATO ASI (Springer-Verlag, Berlin, 1993).Google Scholar
  6. 6.
    J. W. Krzyscin, “Total Ozone Influence on the Surface UV-B Radiation in the Late Spring-Summer 1963–1997: An Analysis of Multiple Time Scales,” J. Geophys. Res., D 105(4), 4993–5000 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    G. R. Casale, D. Meloni, S. Miano, S. Palmieri, and A. M. Siani, “Solar UV-B Irradiance and Total Ozone in Italy: Fluctuations and Trends,” J. Geophys. Res., D. 105(4), 4895–4901 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Sabziparvar, P. M. Forster, and K. P. Shine, “Changes in Ultraviolet Radiation due to Stratospheric and Tropospheric Ozone Change since Preindustrial Times,” J. Geophys. Res., D. 103(20), 26107–26113 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    S. Bronniman and U. Neu, “A Possible Photochemical Link between Stratospheric and Near-Surface Ozone on Swiss Mountain Sites in Late Winter,” J. Atmos. Chem. 31(3), 299–319 (1998).CrossRefGoogle Scholar
  10. 10.
    B. D. Belan, V. V. Zuev, T. K. Sklyadneva, S. V. Smirnov, and G. N. Tolmachev, “On the Role of Total Ozone in Photochemical Production of Its Tropospheric Fraction,” Atmos. Ocean. Opt. 13(10), 860–864 (2000).Google Scholar
  11. 11.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, V. K. Kovalevskii, A. P. Plotnikov, E. V. Pokrovskii, T. K. Sklyadneva, and G. N. Tolmachev, “Automated Monitoring Post for Atmospheric Trace Gases,” Meteorol. Gidrol, No. 3, 110–118 (1999).Google Scholar
  12. 12.
    M. A. Bondarenko, O. E. Bazhenov, and M. V. Grishaev, “Results of Comparison of TOMS and Ground Ozonometric Data,” Atmos. Ocean. Opt. 19(9), 699–702 (2006).Google Scholar
  13. 13.
    O. E. Bazhenov, “Long-Term Trends of Variations in Total Ozone Content According to Data of Ground-Based (Tomsk: 56.48° N, 85.05° E) and Satellite Measurements,” Optika Atmos. Okeana 24(9), 770–774 (2011).Google Scholar
  14. 14.
    B. D. Belan, Tropospheric Ozone (Palmarium Academic Publishing, Saarbrucken, Germany, 2012).Google Scholar
  15. 15.
    H. U. Dutsch, “Vertical Ozone Distribution on Global Scale,” Pure Appl. Geophys. 116(2/3), 511–529 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    G. M. B. Dobson and A. W. Brewer, “Meteorology of Lower Stratosphere,” Proc. Roy. Soc. 185(1001), 144–175 (1945).ADSGoogle Scholar
  17. 17.
    J. R. Holton, P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, “Stratosphere-Troposphere Exchange,” Rev. Geophys. 33(4), 403–409 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    P. Fabian, P. G. Pruchnilwicz, and A. Zand, “Transport and Austauschvorgange in der Atmosphare,” Naturwissen 58(11), 541–546 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    C. R. Homeyer, K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, “Dynamical and Chemical Characteristics of Tropospheric Intrusions Observed during START08,” J. Geophys. Res. 116, D06111 (2011), doi: 10.1029/2010JD015098.ADSCrossRefGoogle Scholar
  20. 20.
    S. Fadnavis, T. Chakraborty, and G. Beig, “Seasonal Stratospheric Intrusion of Ozone in the Upper Troposphere over India,” Ann. Geophys. 28(11), 2149–2159 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    H. Bonich, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray, “On the Structural Changes in the Brewer-Dobson Circulation after 2000,” Atmos. Chem. Phys. 11(8), 3937–3948 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    W. J. Collins, R. G. Derwent, B. Garnier, C. E. Johnson, and M. G. Sanderson, “Effect of Stratosphere-Troposphere Exchange on the Future Tropospheric Ozone Trend,” J. Geophys. Res., D 108(12), 8528 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    K. Okamoto, K. Sato, and H. Akiyoshi, “A Study on the Formation and Trend of the Brewer-Dobson Circulation,” J. Geophys. Res. 116, D10117 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    E. F. Danielsen, “Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity,” J. Atmos. Sci. 25(5), 502–518 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Shapiro, “A Multiple Structures Frontal Sone Jet-Cream System as Revealed by Meteorologically Instrumented Aircraft,” Mont. Weat. Rev. 103(3), 244–253 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    E. A. Ray, K. H. Rosenlof, D. Richard, D. Parrish, and R. Jakoubek, “Distributions of Ozone in the Region of the Subtropical Jet: An Analysis of in situ Aircraft Measurements,” J. Geophys. Res. 109, D08106 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    O. R. Cooper, A. Stohl, G. Hubler, E. Y. Hsie, D. D. Parrish, A. F. Tuck, G. N. Kiladis, S. J. Oltmans, B. J. Johnson, M. Shapiro, J. L. Moody, and A. S. Lefohn, “Direct Transport of Midlatitude Stratospheric Ozone into the Lower Troposphere and Marine Boundary Layer of the Tropical Pacific Ocean,” J. Geophys. Res. 110, D23310 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    N. F. Elanskii, “An Effect of a Jet Stream on the Ozone Layer,” Izv. AN SSSR, Fiz. Atmos. Okeana 1(9), 916–925 (1975).ADSGoogle Scholar
  29. 29.
    N. F. Elanskii and Yu. L. Truttse, “Some Features of the of the Total Ozone and Nitrogen Dioxide Distribution in the Atmosphere from Aircraft Observations,” Izv. AN SSSR, Fiz. Atmos. Okeana 15(1), 119–121 (1979).Google Scholar
  30. 30.
    B. D. Belan, Preprint No. 33 (Institute of Atmospheric Optics, Academy of Science of USSR, Tomsk, 1981).Google Scholar
  31. 31.
    B. D. Belan, “An effect of Jet Streams on Ozone Variations in their Zone,” in Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  32. 32.
    D. W. Waugh, “Impact of Potential Vorticity Intrusions on Subtropical Upper Tropospheric Humidity,” J. Geophys. Res. 110, D11305 (2005), doi: 10.1029/2004JD005669ADSCrossRefGoogle Scholar
  33. 33.
    A. Karpechko, A. Lukyanov, E. Kyro, S. Khaikin, L. Korshunov, R. Kivi, and H. Vomel, “The Water Vapour Distribution in the Arctic Lowermost Stratosphere during the LAUTLOS Campaign and Related Transport Processes Including Stratosphere-Troposphere Exchange,” Atmos. Chem. Phys. 7(1), 107–119 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    E. J. Hintsa, K. A. Boering, M. Weinstein, J. R. Podol- ske, J. J. Margitan, and T. P. Bui, “Troposphere-to-Stratosphere Transport in the Lowermost Stratosphere from Measurements of H2O, CO2, N2O and O3,” Geophys. Res. Lett. 25(14), 2655–2658 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    H. Elbern, J. Hendricks, and A. Ebel, “A Climatology of Tropopause Fold by Global Analyses,” Theor. Appl. Climatol. 59(3–4), 181–200 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    J. Krzyscin, P. Krizan, and J. Jaroslawski, “Long-term Changes in the Tropospheric Column Ozone from the Ozone Soundings over Europe,” Atmos. Environ. 41(3), 606–616 (2007).CrossRefGoogle Scholar
  37. 37.
    M. B. Follette-Cook, R. D. Hudson, and G. E. Nedoluha, “Classification of Northern Hemisphere Stratospheric Ozone and Water Vapor Profiles by Meteorological Regime,” Atmos. Chem. Phys. 9(16), 5989–6003 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    N. K. Vinnichenko, N. Z. Pinus, R. M. Shmeter, and G. N. Shur, Turbulence in Open Air (Gidrometeoizdat, Leningrad, 1976) [in Russian].Google Scholar
  39. 39.
    A. A. Isaev, Statistics in Meteorology and Climatology (Publushing House of MSU, Moscow, 1988) [in Russian].Google Scholar
  40. 40.
    A. I. Kobzar’, Applied Mathematical Statistics. For Engineers and Scientists (FIZMATLIT, Moscow, 2006) [in Russian].Google Scholar
  41. 41.
    A. V. Vasil’ev and I. N. Mel’nikova, Methods of Applied Analysis of Results of Field Environmental Measurements (BGTU, St. Petersburg, 2009) [in Russian].Google Scholar
  42. 42.
    G. Jenkins and D. Watts, Spectral Analysis and Its Applications (Holden Day, Moscow, 1968).zbMATHGoogle Scholar
  43. 43.
    M. I. Fortus, “Analysis of Correlations between Time Series with the Use of the Phase Spectrum,” Izv. Atmos. Ocean. Phys. 43(5), 555–568 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    G. Torrence and G. P. Compo, “A Practical Guide to Wavelet Analysis,” Bull. Amer. Meteorol. Soc. 79(1), 61–78 (1998).ADSCrossRefGoogle Scholar
  45. 45.
    N. M. Astaf’eva, “Wavelet Analysis: Basic Theory and Some Applications,” Physics-Uspekhi 39(11), 1085–1109 (1996).ADSCrossRefGoogle Scholar
  46. 46.
    B. D. Belan, “Troposheric Ozone. 7. Ozone Sinks in the Troposphere,” Optika Atmos. Okeana 23(2), 108–127 (2010).Google Scholar
  47. 47.
    Z. M. Makhover, Climatology of Tropopause (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • P. N. Antokhin
    • 1
  • B. D. Belan
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations