Advertisement

Atmospheric and Oceanic Optics

, Volume 26, Issue 2, pp 85–89 | Cite as

Features of the development of light field perturbations in a kerr medium with nonlinear absorption

  • A. A. Zemlyanov
  • A. D. Bulygin
Optics of Stochastically-Heterogeneous Media

Abstract

The propagation of two, three or more filaments in the background of a plane wave is considered. Based on the numerical solution of the truncated nonlinear Schrödinger equation, the role of the background field in the formation of filamentation during the origin and maintaining of secondary filaments is demonstrated, as well as the possible increase in growing the number of filaments due to their reproduction on the background of a plane wave. It is ascertained that the maximum number of filaments along a propagation path increases with the intensity of the background field, but only up to a certain value of the intensity of back-ground waves. With a further increase in the background wave intensity, the maximal number of filaments formed along the propagation path decreases.

Keywords

Femtosecond Laser Pulse Initial Perturbation Background Intensity Background Field Bessel Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kasparian, M. Rodriguez, G. Mejean, J. Yu., E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 61(301), 61–64 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    Self-Focusing: Past and Present, Ed. by R. W. Boyd, S. G. Lukishova, and Y. R. Shen (Springer-IQEC, 2009).Google Scholar
  3. 3.
    P. Bejot, L. Bonacina, J. Extermann, M. Moret, J.-P. Wolf, R. Ackermann, N. Lascoux, R. Salame, J. Kasparian, L. Berge, S. Champeaux, C. Guet, N. Blanchot, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW Atmospheric White-Light Laser,” Appl. Phys. Lett. 90(15), 151106-1–151106-3 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. Henin, Y. Petit, J. Kasparian, J.-P. Wolf, A. Jochmann, S. D. Kraft, S. Bock, U. Schramm, R. Sauerbrey, W. M. Nakaema, K. Stelmaszczyk, P. Rohwetter, L. Wöste, C.-L. Soulez, S. Mauger, L. Bergé, and S. Skupin, “Saturation of the Filament Density of Ultrashort Intense Laser Impulse in Air,” Appl. Phys., B, doi: 10.1007/s00340-010-3941-x (2010).Google Scholar
  5. 5.
    V. I. Bespalov and V. I. Talanov, “Filament Structure of Light Beams in Nonlinear Fluids,” Pis’ma Zh. Eksp. Teor. Fiz. 3(2), 471–476 (1966).Google Scholar
  6. 6.
    V. P. Kandidov, A. E. Dormidonov, O. G. Kosareva, N. Akozbek, M. Scalora, and S. L. Chin, “Optimum Small-Scale Management of Random Beam Perturbations in a Femtosecond Laser Pulse,” Appl. Phys., B 87(1), 29–36 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    O. G. Kosareva, N. A. Panov, and V. P. Kandidov, “Scenario of Multiple Filamentation and Supercontinuum Generation in a High-Power Femtosecond Laser Pulse,” Atmos. Ocean. Opt. 18(3), 204–211 (2005).Google Scholar
  9. 9.
    S. Skupin, L. Berge, U. Peschel, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Filamentation of Femtosecond Light Pulses in the Air: Turbulent Cells versus Long-Range Clusters,” Phys. Rev., E 70(4), 046602-1–046602-15 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Balashov and A. Kh. Pergament, “Mathematical Modeling of Femtosecond Pulse Propagation,” Matem. Modelir. 18(4), 3–18 (2006).zbMATHGoogle Scholar
  11. 11.
    V. N. Lugovoi and A. M. Prokhorov, “Theory of the Propagation of High-Power Laser Radiation in a Nonlinear Medium,” Usp. Fiz. Nauk 111 (1973).Google Scholar
  12. 12.
    F. Gadi and I. Boaz, “Vectorial and Random Effects in Self-Focusing and in Multiple Filamentation,” Phys. D (Amsterdam) 157(1–2), 112–146 (2001).zbMATHGoogle Scholar
  13. 13.
    M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear Unbalanced Bessel Beams: Stationary Conical Waves Supported by Nonlinear Losses,” Phys. Rev. Lett. 93(15), 153902-1–153902-4 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction Optics of a Light Filament Generated during Self-Focusing of a Femtosecond Laser Pulse in Air,” Atmos. Ocean. Opt. 25(2), 97–105 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Zemlyanov
    • 1
  • A. D. Bulygin
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations