Skip to main content
Log in

Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A numerical simulation-based algorithm is proposed for calculating the backscatter amplification (BSA) coefficient of laser radiation propagating in a turbulent atmosphere. The algorithm permits one to obtain results for conditions under which the known analytical calculation methods are inapplicable. Using this algorithm, the BSA coefficient is analyzed numerically for different conditions of laser radiation propagation in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The Effect of Intensification of Back Scattering by Bodies That Are Situated in a Medium Having Random Inhomogeneities,” Radiophys. Quant. Electr. 16(7), 818–823 (1973).

    Article  ADS  Google Scholar 

  2. A. S. Gurvich and S. S. Kashkarov, “Problem of Enhancement of Scattering in a Turbulent Medium,” Radiophys. Quant. Electr. 20(5), 547–549 (1977).

    Article  ADS  Google Scholar 

  3. Yu. A. Kravtsov and A. I. Saichev, “Effects of Double Passage of Waves in Randomly Inhomogeneous Media,” Physics-Uspekhi 25(7), 494–508 (1982).

    Article  Google Scholar 

  4. V. A. Banakh and V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston and London, 1987).

    Google Scholar 

  5. A. S. Gurvich, “Lidar Sounding of Turbulence Based on the BSA Effect,” Izvestiya, Atmos. Ocean. Phys. (in press).

  6. A. S. Gurvich, RF Patent No. 20 (2012).

  7. A. L. Afanas’ev, A. S. Gurvich, and A. P. Rostov, “Experimental Study of the BSA Effect in a Turbuelnt Atmosphere,” in Proc. of the XVIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics”, Irkutsk, 2012 (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  8. V. A. Banakh, “Enhancement of the Laser Return Mean Power at the Strong Optical Scintillation Regime in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 26(2), (2013).

    Google Scholar 

  9. V. P. Kandidov, “Monte Carlo Method in Nonlinear Statistical Optics,” Physics-Uspekhi 39(12), 1243–1272 (1996).

    Article  ADS  Google Scholar 

  10. R. Frehlich, “Simulation of Laser Propagation in a Turbulent Atmosphere,” Appl. Opt. 39(3), 393–397 (2000).

    Article  ADS  Google Scholar 

  11. A. Belmonte, “Feasibility Study for the Simulation of Beam Propagation: Consideration of Coherent Lidar Performance,” Appl. Opt. 39(30), 542–5445 (2000).

    Article  Google Scholar 

  12. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the Subharmonic Method in Problems of Computer Simulation of Laser Beam Propagation in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).

    Article  Google Scholar 

  13. P. A. Konyaev, E. A. Tartakovskii, and G. A. Filimonov, “Computer Simulation of Optical Wave Propagation with the Use of Parallel Programming,” Atmos. Ocean. Opt. 24(5), 425–431 (2011).

    Article  Google Scholar 

  14. A. Belmonte and B. J. Rye, “Heterodyne Lidar Returns in the Turbulent Atmosphere: Performance Evaluation of Simulated Systems,” Appl. Opt. 39(15), 2401–2411 (2000).

    Article  ADS  Google Scholar 

  15. R. G. Frehlich, “Effect of Refractive Turbulence on Ground-Based Verification of Coherent Doppler Lidar Performance,” Appl. Opt. 39(24), 4237–4246 (2000).

    Article  ADS  Google Scholar 

  16. V. A. Banakh, I. N. Smalikho, and Ch. Werner, “Numerical Simulation of Effect of Refractive Turbulence on the Statistics of a Coherent Lidar Return in the Atmosphere,” Appl. Opt. 39(30), 5403–5414 (2000).

    Article  ADS  Google Scholar 

  17. V. A. Banakh and I. N. Smalikho, “Determination of Optical Turbulence Intensity by Atmospheric Backscattering of Laser Radiation,” Atmos. Ocean. Opt. 24(5), 457–465 (2011).

    Article  Google Scholar 

  18. V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  19. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  20. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Modern Problems of Atmospheric Optics. Vol. 5. Optics of Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  21. A. Zilberman and N. S. Kopeika, “Lidar Measurements of Atmospheric Turbulence Profiles,” Proc. SPIE 5338, 288–297 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Smalikho.

Additional information

Original Russian Text © I.N. Smalikho, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalikho, I.N. Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation. Atmos Ocean Opt 26, 135–139 (2013). https://doi.org/10.1134/S1024856013020127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013020127

Keywords

Navigation