Advertisement

Atmospheric and Oceanic Optics

, Volume 26, Issue 2, pp 135–139 | Cite as

Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation

  • I. N. SmalikhoEmail author
Optical Instrumentation

Abstract

A numerical simulation-based algorithm is proposed for calculating the backscatter amplification (BSA) coefficient of laser radiation propagating in a turbulent atmosphere. The algorithm permits one to obtain results for conditions under which the known analytical calculation methods are inapplicable. Using this algorithm, the BSA coefficient is analyzed numerically for different conditions of laser radiation propagation in the atmosphere.

Keywords

Laser Radiation Lidar Scattered Radiation Location Path Laser Beam Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The Effect of Intensification of Back Scattering by Bodies That Are Situated in a Medium Having Random Inhomogeneities,” Radiophys. Quant. Electr. 16(7), 818–823 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Gurvich and S. S. Kashkarov, “Problem of Enhancement of Scattering in a Turbulent Medium,” Radiophys. Quant. Electr. 20(5), 547–549 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. A. Kravtsov and A. I. Saichev, “Effects of Double Passage of Waves in Randomly Inhomogeneous Media,” Physics-Uspekhi 25(7), 494–508 (1982).CrossRefGoogle Scholar
  4. 4.
    V. A. Banakh and V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston and London, 1987).Google Scholar
  5. 5.
    A. S. Gurvich, “Lidar Sounding of Turbulence Based on the BSA Effect,” Izvestiya, Atmos. Ocean. Phys. (in press).Google Scholar
  6. 6.
    A. S. Gurvich, RF Patent No. 20 (2012).Google Scholar
  7. 7.
    A. L. Afanas’ev, A. S. Gurvich, and A. P. Rostov, “Experimental Study of the BSA Effect in a Turbuelnt Atmosphere,” in Proc. of the XVIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics”, Irkutsk, 2012 (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].Google Scholar
  8. 8.
    V. A. Banakh, “Enhancement of the Laser Return Mean Power at the Strong Optical Scintillation Regime in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 26(2), (2013).Google Scholar
  9. 9.
    V. P. Kandidov, “Monte Carlo Method in Nonlinear Statistical Optics,” Physics-Uspekhi 39(12), 1243–1272 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    R. Frehlich, “Simulation of Laser Propagation in a Turbulent Atmosphere,” Appl. Opt. 39(3), 393–397 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    A. Belmonte, “Feasibility Study for the Simulation of Beam Propagation: Consideration of Coherent Lidar Performance,” Appl. Opt. 39(30), 542–5445 (2000).CrossRefGoogle Scholar
  12. 12.
    V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the Subharmonic Method in Problems of Computer Simulation of Laser Beam Propagation in a Turbulent Atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).CrossRefGoogle Scholar
  13. 13.
    P. A. Konyaev, E. A. Tartakovskii, and G. A. Filimonov, “Computer Simulation of Optical Wave Propagation with the Use of Parallel Programming,” Atmos. Ocean. Opt. 24(5), 425–431 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Belmonte and B. J. Rye, “Heterodyne Lidar Returns in the Turbulent Atmosphere: Performance Evaluation of Simulated Systems,” Appl. Opt. 39(15), 2401–2411 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    R. G. Frehlich, “Effect of Refractive Turbulence on Ground-Based Verification of Coherent Doppler Lidar Performance,” Appl. Opt. 39(24), 4237–4246 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Banakh, I. N. Smalikho, and Ch. Werner, “Numerical Simulation of Effect of Refractive Turbulence on the Statistics of a Coherent Lidar Return in the Atmosphere,” Appl. Opt. 39(30), 5403–5414 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Banakh and I. N. Smalikho, “Determination of Optical Turbulence Intensity by Atmospheric Backscattering of Laser Radiation,” Atmos. Ocean. Opt. 24(5), 457–465 (2011).CrossRefGoogle Scholar
  18. 18.
    V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  19. 19.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  20. 20.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Modern Problems of Atmospheric Optics. Vol. 5. Optics of Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  21. 21.
    A. Zilberman and N. S. Kopeika, “Lidar Measurements of Atmospheric Turbulence Profiles,” Proc. SPIE 5338, 288–297 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric OpticsSiberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations