Advertisement

Atmospheric and Oceanic Optics

, Volume 26, Issue 2, pp 126–134 | Cite as

Lidar measurements of variability of the vertical ozone distribution caused by the stratosphere-troposphere exchange in the Far East Region

  • A. N. Pavlov
  • S. Yu. Stolyarchuk
  • K. A. Shmirko
  • O. A. Bukin
Optical Instrumentation

Abstract

This paper covers the question of stratosphere-troposphere exchange in the transitional “oceancontinent” zone by means of lidar measurements of the vertical ozone distribution in 2007–2009. The simultaneous analysis of the vertical ozone distribution, weather and wind field parameters shows that the stratosphere-troposphere exchange over Vladivostok is caused generally by tropopause folds, which are formed due to stratospheric air motion from north to south and then into the troposphere to the southwest of the major cyclones. In this case, a positive trend of ozone concentration and a decrease in air humidity in the upper troposphere occur when polar air masses form the polar jet stream in the vicinity of the subtropical jet stream. Hence, the location of kernels of both jets becomes unstable and a tropopause inversion layer breaks down, which leads to a possibility of stratospheric air intrusion into the troposphere in the region of mutual influence of the jets.

Keywords

Ozone Lidar Measurement Vertical Ozone Distribution Troposphere Exchange Tropopause Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Stohl, P. Bonasoni, P. Cristofanelli, and W. Collins, “Stratosphere-Troposphere Exchange: A Review, and what We Have Learned From STACCATO,” J. Geophys. Res. D 108(12), STA1/1–STA1/15 (2003).Google Scholar
  2. 2.
    J. Brioude, J.-P. Cammas, and O. R. Cooper, “Stratosphere-Troposphere Exchange in a Summertime Extratropical Low: Analysis,” Atmos. Chem. Phys. 6(9), 2337–2353 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    P. Hoor, H. Fischer, L. Lange, J. Lelieveld, and D. Brunner, “Seasonal Variations of a Mixing Layer in the Lowermost Stratosphere as Identified by the CO-O3 Correlation from in situ Measurements,” J. Geophys. Res. D 107(5) (2002).Google Scholar
  4. 4.
    L. L. Pan, K. P. Bowman, M. Shapiro, W. J. Randel, R. S. Gao, T. Campos, C. Davis, S. Schauffler, B. A. Ridley, J. C. Wei, and C. Barnet, “Chemical Behavior of the Tropopause Observed during the Stratosphere-Troposphere Analyses of Regional Transport Experiment,” J. Geophys. Res. D 112(18110) (2007).Google Scholar
  5. 5.
    E. Galani, D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wemli, and E. Gerasopoulos, “Observations of Stratosphere-to-Troposphere Transport Events over the Eastern Mediterranean Using a Ground-Based Lidar System,” J. Geophys. Res. D 108(12), STA12 (2003).CrossRefGoogle Scholar
  6. 6.
    V. V. Zuev, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, and A. V. El’nikov, “Breakthrough of Stratospheric Air Masses into the Upper Troposphere Retrieved from Ozone Lidar Measurements,” Atmos. Ocean. Opt. 21(7), 514–519 (2008).Google Scholar
  7. 7.
    S.-H. Hwang, J. Kim, G.-R. and Cho, “Observation of Secondary Ozone Peaks near the Tropopause over the Korean Peninsula Associated with Stratosphere-Troposphere Exchange,” J. Geophys. Res. 112, doi: 10.1029/2006JD007978 (2007).Google Scholar
  8. 8.
    L. L. Pan, W. J. Randel, J. C. Gille, W. D. Hall, B. Nardi, S. Massie, V. Yudin, R. Khosravi, P. Konopka, and D. Tarasick, “Tropospheric Intrusions Associated with the Secondary Tropopause,” J. Geophys. Res. 114, doi: 10.1029/2008JD011374 (2009).Google Scholar
  9. 9.
    F. Ravetta and G. Ancellet, “Identication of Dynamical Processes at the Tropopause during the Decay of a Cutoff Low Using High Resolution Airborne Lidar Measurements,” Mont. Rev. Weater Rev. 128(9), 3252–3267 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    L. El Amraoui, J.-L. Attié, N. Semane, M. Claeyman, V.-H. Peuch, J. Warner, P. Ricaud, J.-P. Cammas, A. Piacentini, B. Josse, D. Cariolle, S. Massart, and H. Bencherif, “Midlatitude Stratosphere-Troposphere Exchange as Diagnosed by MLS O3 and MOPITT CO Assimilated Field,” Atmos. Chem. Phys. 10(5), 2175–2194 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, “High-Resolution Lidar Measurements of Stratosphere-Troposphere Exchange, J. Atmos. Sci. 56(2), 319–330 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Climate Change 2007) (Cambridge University Press, 2007).Google Scholar
  13. 13.
    W. K. Hocking, T. Carey-Smith, D. W. Tarasick, P. S. Argall, K. Strong, Y. Rochon, I. Zawadzki, and P. A. Taylor, “Detection of Stratospheric Ozone Intrusions by Windprofiler Radars,” Nature (Gr. Brit.) 250, 281–284 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    US Environmental Protection Agency Air Quality Criteria for Ozone and Related Photochemical Oxidants (Office of Research and Development National Center for Environmental Assessment, Washington Office, Washington, DC, 2006), Vol. 1, pp. EPA/600/R-05/004aF-cF.Google Scholar
  15. 15.
    G. J. Roelofs, A. S. Kentarchos, T. Trickl, A. Stohl, W. J. Collins, R. A. Crowther, D. Hauglustaine, A. Klo- necki, K. S. Law, M. G. Lawrence, R. von Kuhlmann, and M. van Weele, “Intercomparison of Tropospheric Ozone Models: Ozone Transport in a Complex Tropopause Folding Event,” J. Geophys. Res. D 108(12), STA14 (2003).CrossRefGoogle Scholar
  16. 16.
    A. A. Kukoleva, “Assessment of Cross-Tropopause Ozone Fluxes in Mesoscale Processes,” Izv., Atmos. Ocean. Phys. 38(5), 603–612 (2002).Google Scholar
  17. 17.
  18. 18.
    O. A. Bukin, Nguen Suan An, A. N. Pavlov, S. Yu. Stolyarchuk, K. A. Shmirko, “Effect that Jet Streams Have on the Vertical Ozone Distribution and Characteristics of Tropopause Inversion Layer in the Far East Region,” Izv., Atmos. Ocean. Phys. 47(5), 660–668 (2011).CrossRefGoogle Scholar
  19. 19.
    E. F. Danielsen, “Stratosphere-Troposphere Exchange, Based on Radioactivity, Ozone and Potential Vorticity,” J. Atmos. Sci. 25(3), 502–518 (1968).ADSCrossRefGoogle Scholar
  20. 20.

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. N. Pavlov
    • 1
  • S. Yu. Stolyarchuk
    • 1
  • K. A. Shmirko
    • 1
  • O. A. Bukin
    • 1
  1. 1.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations