Advertisement

Atmospheric and Oceanic Optics

, Volume 26, Issue 2, pp 140–148 | Cite as

Adaptive correction of distortions in a multichannel optical system

  • O. L. Antipov
  • F. Yu. Kanev
  • E. I. Tsyro
  • D. S. Kuksenok
Optical Instrumentation

Abstract

Results of modern investigations of multichannel laser systems are analyzed; sources of aberrations in such systems and the methods of their active and passive compensation are described. Simulation results of combined beam propagation are also presented; a possibility of long-range energy transfer in systems of such a type is considered. Effects of random phase incursions and atmospheric turbulence on beam parameters in the plane of observations are studied. The use of the multidither algorithm for correction of random phase distortions in multichannel systems is considered.

Keywords

Fiber Laser Gaussian Beam Master Oscillator Power Amplifier Laser Array Multichannel System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron 11(3), 567–572 (2005).CrossRefGoogle Scholar
  2. 2.
    H. Bruesselbach, S. Wang, M. Minden, D. C. Jones, and M. Mangir, “Power-Scalable Phase-Compensating Fiber-Array Transceiver for Laser Communications through the Atmosphere,” J. Opt. Soc. Amer. B 22(2), 347–354 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    C. Bellanger, A. Brignon, J. Colineau, and J. P. Huignard, “Coherent Fiber Combining by Digital Holography,” Opt. Lett. 33(24), 2937–2939 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Huo and P. K. Cheo, “Analysis of Transverse Mode Competition and Selection in Multicore Fiber Lasers,” J. Opt. Soc. Amer. B 22(11), 2345–2349 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    B. W. Grime, W. B. Roh, and Th. G. Alley, “Phasing of a Two-Channel Continuous-Wave Master Oscillator-Power Amplifier by Use of a Fiber Phase-Conjugate Mirror,” Opt. Lett. 30(18), 2415–2417 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Megret, “All-Fiber Coherent Combining of Er-Doped Amplifiers through Refractive Index Control in Yb-Doped Fibers,” Opt. Lett. 34(22), 3574–3576 (2009).CrossRefGoogle Scholar
  7. 7.
    X. Fan, J. Liu, J. Liu, and J. Wu, “Experimental Investigation of a Seven-Element Hexagonal Fiber Coherent Array,” Chinese Opt. Lett. 8(1), 48–51 (2010).CrossRefGoogle Scholar
  8. 8.
    J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450-nm High-Brightness Wavelength-Beam Combined Diode Laser Array,” Opt. Express 16(13), 9405–9409 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    B. Lei and Y. Feng, “Phase Locking of an Array of Three Fiber Lasers by an All-Fiber Coupling Loop,” Opt. Express 15(25), 17114–17119 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. Vorontsov and S. I. Lachinova, “Laser Beam Projection with Adaptive Array of Fiber Collimators. I. Basic Consideration for Analysis,” J. Opt. Soc. Amer. A 25(8), 1949–1959 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Vorontsov and S. I. Lachinova, “Laser Beam Projection with Adaptive Array of Fiber Collimators. II. Analysis of Atmospheric Compensation Efficiency,” J. Opt. Soc. Amer. A 25(8), 1960–1973 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    B. Wang, E. Mies, M. Minden, and A. Sanchez, “All-Fiber 50 W Coherently Combined Passive Laser Array,” Opt. Lett. 34(7), 863–865 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Kozlov, J. Hernandes-Cordero, and T. F. Morse, “All-Fiber Coherent Beam Combining of Fiber Lasers,” Opt. Lett. 24(24), 1814–1816 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    J. Cao, J. Hou, Q. Lu, and X. Xu, “Numerical Research on Self-Organized Coherent Fiber Laser Arrays with Circulating Field Theory,” J. Opt. Soc. Am. B: Opt. Phys. 25(7), 1187–1192 (2008).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Pu. Zhou, Z. Liu, X. Xu, and Z. Chen, “Numerical Analysis of the Effects of Aberrations on Coherently Combined Fiber Laser Beams,” Appl. Opt. 47(18), 3350–3359 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    T. Y. Fan, “The Effect of Amplitude (Power) Variations on Beam Combining Efficiency for Phased Arrays,” IEEE J. Sel. Top. Quantum Electronics 15(2), 291–293 (2009).CrossRefGoogle Scholar
  17. 17.
    F. Yu. Kanev, V. P. Lukin, and L. N. Lavrinova, “Possibility of Adaptive Correction for Atmospheric Turbulent Layer,” Proc. SPIE 4341, 135–139 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    Pu. Zhou, Y. Ma, X. Wang, H. Ma, J. Wang, X. Xu, and Z. Liu, “Coherent Beam Combination of a Hexagonal Distributed High Power Fiber Amplifier Array,” Appl. Opt. 48(33), 6537–6540 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    M. A. Vorontsov and G. W. Carhart, “Adaptive Wavefront Control with Asynchronous Stochastic Parallel Gradient Descent Clusters,” J. Opt. Soc. Amer. A 23(10), 2613–2622 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    T. Weyrauch, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, A. P. Rostov, E. E. Polnau, and J. J. Liu, “Experimental Demonstration of Coherent Beam Combining over a 7 km Propagation Path,” Opt. Lett. 36(22), 4455–4457 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    M. A. Vorontsov and S. S. Chesnokov, “A Numerical Method for the Study of Adaptive Optical Aperture Sounding Systems,” Izv. Vuzov, Radiofiz. 25(11), 1310–1316 (1982) [in Russian].ADSGoogle Scholar
  22. 22.
    S. A. Akhmanov, M. A. Vorontsov, V. P. Kandidov, A. P. Sukhorukov, and S. S. Chesnokov, “Thermal Self-Action of Optical Beams and Methods for Its Compensation,” Izv. Vuzov, Radiofiz. 28(1), 1–22 (1980).ADSGoogle Scholar
  23. 23.
    Influence of the Atmosphere on the Laser Radiation Propagation, Ed. by V. E. Zuev (Publishing House of the Tomsk Branch of SB RAS, Tomsk, 1987) [in Russian].Google Scholar
  24. 24.
    V. A. Banakh and I. N. Smalikho, “Laser Beam Propagation along Extended Vertical and Slant Paths in the Turbulent Atmosphere,” Atmos. Ocean. Opt. 6(4), 233–237 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. L. Antipov
    • 1
  • F. Yu. Kanev
    • 2
    • 3
  • E. I. Tsyro
    • 2
  • D. S. Kuksenok
    • 4
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.Tomsk State Polytechnical UniversityTomskRussia
  4. 4.Tomsk State UniversityTomskRussia

Personalised recommendations