Advertisement

Atmospheric and Oceanic Optics

, Volume 25, Issue 5, pp 321–327 | Cite as

The calculation of the temperature dependence of He-broadening coefficients of H2S rotation lines

  • V. I. Starikov
Spectroscopy of Ambient Medium

Abstract

The problem of calculation of He-broadening coefficients for rotational lines of the H2S molecule at different temperatures (including close to absolute zero) is considered and discussed. The parabolic and exact trajectory models are used in the calculations. It is shown that semi-classical methods allow retrieving experimental data on broadening coefficients for temperatures of up to 10 K. The optimal inter-molecular potential has been calculated, which gives the best description of the temperature dependence of He-broadening coefficients for the 110 ← 101 and 220 ← 211 rotational lines.

Keywords

Oceanic Optic Potential Parameter Rotation Line Intermolecular Potential Resonance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Waschull, F. Kuhnemann, and B. Sumpf, “Self-, Air, and Helium Broadening in the in the ν2 Band of H2S,” J. Mol. Spectrosc. 165, 150–158 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    B. Sumpf, I. Meusel, and H. D. Kronfeldt, “Noble Gas Broadening in Fundamental Bands of H2S,” J. Mol. Spectrosc. 184, 51–55 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    B. Sumpf, “Experimental Investigation of the Self-Broadening Coefficients in the ν1 + ν3 Band of SO2 and 2ν2 Band of H2S,” J. Mol. Spectrosc. 181, 160–167 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kissel, B. Sumpf, H. D. Kronfeldt, B. A. Tikhomirov, and Yu. N. Ponomarev, “Molecular-Gas-Pressure-Induced Line-Shift and Line-Broadening in the ν2-Band of H2S,” J. Mol. Spectrosc. 216, 1–10 (2002).CrossRefGoogle Scholar
  5. 5.
    G. D. Tejwani and E. S. Yeung, “Pressure Broadened Linewidths of Hydrogen Sulfide,” J. Quant. Spectrosc. and Radiat. Transfer 17, 323–326 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Starikov and A. E. Protasevich, “Broadening of Absorption Lines of the ν2 Band of the H2S Molecule by the Pressure of Atmospheric Gases,” Opt. Spectrosc. 101, 523–531 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    B. Sumpf, I. Meusel, and H. D. Kronfeldt, “Self- and Air-Broadening in the ν1 and ν3 Bands of H2S,” J. Mol. Spectrosc. 177, 143–145 (1966).CrossRefGoogle Scholar
  8. 8.
    A. Kissel, H. D. Kronfeldt, B. Sumpf, Yu. N. Ponomarev, I. V. Ptashnik, and B. A. Tikhomirov, “Investigation of Line Profiles in the ν2 Band of H2S,” Spectrochimica Acta, A 55, 2007–2013 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    D. R. Willey, D. N. Bittner, and F. C. De Lucia, “Pressure Broadening Cross Sections for the H2S-He System in the Temperature Region between 4.3 and 1.8 K,” J. Mol. Spectrosc. 134, 240–242 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    D. C. Flatin, T. M. Goyette, M. M. Beaky, C. D. Ball, and F. C. De Lucia, “Rotational State Dependence of Collision Induced Line Broadening and Shift at Low Temperature,” J. Chem. Phys. 110, 2087–2098 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    C. D. Ball, M. Mengel, F. C. De Lucia, and D. E. Woon, “Quantum Scattering Calculations for H2S-He between 1–600 K in Comparison with Pressure Broadening, Shift, and Time Resolved Double Resonance Experiments,” J. Chem. Phys. 111, 8893–8903 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Starikov, “Noble Gas Broadening Calculations for Fundamental Bands of H2S,” J. Comp. Methods in Sciences and Engineering 10, 1–10 (2010).Google Scholar
  13. 13.
    D. Robert and J. Bonamy, “Short Range Force Effect in Semiclassical Molecular Line Broadening Calculations,” J. de Phys. 40, 923–943 (1979).CrossRefGoogle Scholar
  14. 14.
    V. I. Starikov and N. N. Lavrentieva, Collisional Broadening of Absorption Spectral Lines for Atmospheric Gases (Publishing House of IAO SB RAS, Tomsk, 2006) [in Russian].Google Scholar
  15. 15.
    B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, and J. Taine, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric Top Molecules,” J. Chem. Phys. 84, 4256–4267 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    S. P. Neshyba and R. R. Gamache, “Improved Line-Broadening Coefficients for Asymmetric Rotors Molecules with Application to Ozone Lines Broadened by Nitrogen,” J. Quant. Spectrosc. and Radiat. Transfer 50, 443–453 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    J. O. Girshfelder, C. F. Kurtis, and R. Bred, Molecular Theory of Gases and Liquids (Izd-vo inostr. lit., Moscow, 1961) [in Russian].Google Scholar
  18. 18.
    L. Monchick and E. A. Mason, “Transport Properties of Polar Gases,” J. Chem. Phys. 35, 1676–1697 (1961).ADSCrossRefGoogle Scholar
  19. 19.
    J. P. Bouanich, “Site-Site Lennard-Jones Potential Parameters for N2, O2, H2, CO and CO2,” J. Quant. Spectrosc. and Radiat. Transfer 47, 243–250 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    A. D. Bykov, N. N. Lavrentieva, and L. N. Sinitsa, “Resonance Functions of the Theory of Broadening and Shift of Lines for Actual Trajectories,” Atmos. Ocean. Opt. 5(11), 728–730 (1992).Google Scholar
  21. 21.
    V. I. Starikov, “Calculation of the Self-Broadening Coefficients of Water Vapor Absorption Lines Using an Exact Trajectory Model,” Opt. Spectrosc. 104, 513–523 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Starikov
    • 1
    • 2
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  2. 2.Yurga Institute of Technology (Branch) of National Research Polytechnic UniversityKemerovskaya oblast, YurgaRussia

Personalised recommendations