Atmospheric and Oceanic Optics

, Volume 25, Issue 5, pp 364–371 | Cite as

Estimate of the urban effect on aerosol turbidity of the atmosphere according to data of two-point “background-industrial city” measurements

  • V. A. Poddubny
  • A. P. Luzhetskaya
  • Yu. I. Markelov
  • D. M. Kabanov
Optics of Clusters, Aerosols, and Hydrosoles


We analyze the coupled measurements of the aerosol optical depth (AOD) and moisture content of the atmosphere in the Middle Urals, performed during the summer-fall period in urban (Yekaterinburg) and background (∼65 km away) observation sites. In addition to AOD, we also considered the following characteristics of the atmospheric aerosol: the Angstrom parameters α and β, and the fine and coarse mode of AOD. It is found that the AOD value is almost unaffected by a coarse fraction of urban aerosol. A statistically significant difference is found in AOD values at all wavelengths in the range from 0.34 to 1.02 μm, in the Angstrom selectivity exponent, and in the fine mode of aerosol optical depth, between the two sites. This indicates that there is an additional contribution of near-ground urban aerosol to the aerosol optical depth.


Aerosol Optical Depth Aerosol Optical Thickness Urban Effect Urban Aerosol Aerosol Optical Depth Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kusmierczyk-Michulec, “Optical Measurements of Atmospheric Aerosols in Air Quality Monitoring,” in Air Quality-Models and Applications (InTech-Open Access Publisher, 2011), p. 153–172.Google Scholar
  2. 2.
    N. Kumar, A. Chu, and A. Foster, “An Empirical Relationship between PM2.5 and Aerosol Optical Depth in Delhi Metropoliant,” Atmos. Environ. 41(21), 4492–4503 (2007).CrossRefGoogle Scholar
  3. 3.
    M. Jin, J. M. Shepherd, and M. D. King, “Urban Aerosols and Their Variations with Clouds and Rainfall: A Case Study for New York and Houston,” J. Geophys. Res. 110(D10S20) (2005), doi: 10.1029/2004JD005081Google Scholar
  4. 4.
    R. B. A. Koelemeijer, C. D. Homan, and J. Matthijsen, “Comparison of Spatial and Temporal Variations of Aerosol Optical Thickness and Particulate Matter over Europe,” Atmos. Environ. 40(27), 5304–5315 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Schaap, R. M. A. Timmermans, R. B. A. Koelemeijer, G. de Leeuw, and P. J. H. Builtjes, “Evaluation of MODIS Aerosol Optical Thickness over Europe Using Sun Photometer Observations,” Atmos. Environ. 42(9), 2187–2197 (2008).CrossRefGoogle Scholar
  6. 6.
    B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Scha- fer, B. Chatenet, F. Laveny, Y. J. Kaufman, J. V. Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibord, “An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET,” J. Geophys. Res., D 106(11), 12067–12097 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    G. M. Abakumova, I. N. Plakhina, I. A. Repina, and E. V. Yarkho, “Radiation Parameters of the Clear Air of Moscow and Zvenigorod in July–September 1992,” Izv. RAN. Fiz. Atmos. Okeana 30(2), 204–209 (1994).Google Scholar
  8. 8.
    E. V. Yarkho, “Temporal Variability of the Aerosol Optical Depth in Different Climatic Regions,” Izv. RAN. Fiz. Atmos. Okeana 30(3), 417–424 (1994).Google Scholar
  9. 9.
    E. V. Gorbarenko, “Aerosol Component of the Optical Depth of the Atmosphere as a Characteristics of Anthropogenic Pollution of Air over Industrial Centers,” Meteorol. Gidrol., No. 3, 12–18 (1997).Google Scholar
  10. 10.
    G. M. Abakumova and E. V. Gorbarenko, Air Transparency in Moscow for the Past 50 Years and its Change over the Territory of Russia (Izd-vo LKI, Moscow, 2008) [in Russian].Google Scholar
  11. 11.
    E. V. Gorbarenko, A. E. Erokhina, and A. B. Lukin, “Long-Term Variations in the Aerosol Optical Depth in Russia,” Meteorol. Gidrol., No. 7, 41–48 (2006).Google Scholar
  12. 12.
    N. E. Chubarova and M. A. Sviridenkov, “Estimates of Urban Aerosol Pollution According to CIMEL Data in Moscow and Zvenigorod and Its Radiation Effects,” in Proc. of Intern. Sympos. of CIS Countries “Atmospheric Radiation and Dynamics” (MSRAD-2009) (Izd-vo St. PSU, 2009) [in Russian].Google Scholar
  13. 13.
    S. M. Sakerin, D. M. Kabanov, I. M. Nasrtdinov, S. A. Turchinovich, Yu. S. Turchinovich, “Results of Two-Point Experiments on Estimation of Anthropogenic Impact of a City on Parameters of Air Transparencey,” Optika Atmos. Okeana 22(12), 1108–1113 (2009).Google Scholar
  14. 14.
    S. M. Sakerin and D. M. Kabanov, “Correlations between the Parameters of Angström Formula and Aerosol Optical Thickness of the Atmosphere in the Wavelength Range from 1 to 4 μm,” Atmos. Ocean. Opt. 20(3), 200–206 (2007).Google Scholar
  15. 15.
    S. M. Sakerin and D. M. Kabanov, “Spectral Dependence of the Atmospheric Aerosol Optical Depth in the Wavelength Range from 0.37 to 4 μm,” Atmos. Ocean. Opt. 20(2), 141–149 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. A. Poddubny
    • 1
  • A. P. Luzhetskaya
    • 1
  • Yu. I. Markelov
    • 1
  • D. M. Kabanov
    • 2
  1. 1.Institute of Industrial Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations