Advertisement

Atmospheric and Oceanic Optics

, Volume 25, Issue 4, pp 256–262 | Cite as

Looking for a glory in A-water clouds

  • S. M. Prigarin
  • K. B. Bazarov
  • U. G. Oppel
Optics of Clusters, Aerosols, and Hydrosoles

Keywords

Droplet Size Phase Function Oceanic Optic Water Cloud Cloud Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Water and Aqueous Solutions at Subzero Temperature, Ed. by F. Franks (Plenum Press, New York, 1982).Google Scholar
  2. 2.
    A. N. Nevzorov, “Some Properties of Metastable States of Water,” Physics of Wave Phenomena 14(1), 45–57 (2006).Google Scholar
  3. 3.
    A. N. Nevzorov, “Permanence, Properties and Nature of Liquid Phase in Ice-Containing Clouds,” in 11th Int. Conf. on Clouds and Precipitation, 1992, Montreal, Canada, p. 270–273.Google Scholar
  4. 4.
    A. N. Nevzorov, “Investigations in Physics of Liquid Phase in Ice-Containing Clouds,” Meteorologiya i Gidrologiya 18(9), 55–68 (1993) [in Russian].Google Scholar
  5. 5.
    A. N. Nevzorov, “Cloud Phase Composition and Phase Evolution as Deduced from Experimental Evidence and Physico-Chemical Concepts,” in 13th Int. Conf. on Clouds and Precipitation, Reno, Nevada, USA, 2000, p. 728–731.Google Scholar
  6. 6.
    A. N. Nevzorov, “Internal Mechanism of Metastable Liquid Water Crystallization and Its Effects on Intracloud Processes,” Izvestiya, Atmos. and Ocean Phys. 42(6), 765–772 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. N. Nevzorov, “Bimorphism and Properties of Liquid Water in Cold Clouds,” in Some Problems of Cloud Physics (Meteorologiya i Gidrologiya, Moscow, 2008), p. 268–298 [in Russian].Google Scholar
  8. 8.
    A. N. Nevzorov, “Glory Phenomenon and a Nature of Liquid-Drop Fraction in Cold Clouds,” Atmos. Ocean. Opt. 20(8), 613–619 (2007).Google Scholar
  9. 9.
    A. N. Nevzorov, “On the Theory and Physics of Glory Formation,” Atmos. Ocean. Opt. 24(4), 344–348 (2011).Google Scholar
  10. 10.
    B. Mayer and C. Emde, “Comment on ‘Glory Phenomenon Informs of Presence and Phase State of Liquid Water in Clouds’ by Anatoly N. Nevzorov,” Atmospheric Research 84(4), 410–419 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    B. Mayer, M. Schroder, R. Preusker, and L. Shuller, “Remote Sensing of Water Cloud Droplet Size Distribution Using the Backscattering Glory: A Case Study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    P. Laven, “Simulation of Rainbows, Coronas, and Glories by Use of Mie Theory,” Appl. Opt. 42(3), 436–444 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    P. Laven, “How are Glories Formed,” Appl. Opt. 44(27), 5675–5683 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    N. P. Romanov and S. O. Dubnichenko, “Physics of Formation and Analytical Description of Glory Properties,” Atmos. Ocean. Opt. 23(7), 549–560 (2010).Google Scholar
  15. 15.
    W. Wiscombe, “Improved Mie Scattering Algorithms,” Appl. Opt. 19(9), 1505–1509 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).Google Scholar
  17. 17.
    M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: the Software Package OPAC,” Bull. Amer. Meteor. Soc. 79, 831–844 (1998).CrossRefGoogle Scholar
  18. 18.
    A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Adler-Golden, “MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).CrossRefGoogle Scholar
  19. 19.
    E. P. Shettle and R. W. Fenn, “Models for the Aerosols for the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” AFGL-TR-79-0214 Environmental Research Papers, no. 676 (1979).Google Scholar
  20. 20.
    P. V. Dyachenko, Experimental Application of the Method of Mathematical Statistics to Microstructural Fog and Cloud Research (Voeikov Main Geophys. Obser., 1962).Google Scholar
  21. 21.
    B. A. Silverman and E. D. Sprague, “Airborne Measurement of in-Cloud Visibility,” in Preprints the Second National Conf. on Weather Modification, Santa Barbara, Amer. Meteor. Soc., 1970, p. 271–276.Google Scholar
  22. 22.
    L. W. Abreu and G. P. Anderson, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Ontar Corporation for PL/GPOS, 1996).Google Scholar
  23. 23.
    D. Segelstein, The Complex Refractive Index of Water, M.S. Thesis (Univ. of Missouri, Kansas City, 1981).Google Scholar
  24. 24.
    S. M. Prigarin, A. G. Borovoi, and U. Oppel, “Halos and Multiple Scattering in Crystal Clouds (Results of Monte Carlo Simulation),” in Proc. of XVI Int. Sympos. “Atmospheric and Ocean Optics. Atmospheric Physics”, Tomsk, October 12–15, 2009 (Publishing House of Institute of Atmospheric Optics, Tomsk, 2009), p. 374–377.Google Scholar
  25. 25.
    S. M. Prigarin, “Numerical Simulation of Halo in Crystal Clouds by Monte Carlo Method,” Russian J. Numer. Anal. Math. Model. 24(5), 481–494 (2009).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. M. Prigarin
    • 1
    • 2
  • K. B. Bazarov
    • 2
  • U. G. Oppel
    • 3
  1. 1.Institute of Comp. Mathematics and Math. GeophysicsSB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of MathematicsLudwig-Maximilian University of MunichMunichGermany

Personalised recommendations