Skip to main content
Log in

Investigation of the vertical distribution of tropospheric aerosol layers using the data of multiwavelength lidar sensing. Part 3. Spectral peculiarities of the vertical distribution of the aerosol optical characteristics

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The spectral peculiarities of the distributions of the backscattering β a i , z) and extinction σ a i , z) coefficients, as well as lidar ratio S a i , z) estimated from the data of multi-wavelength sensing in Tomsk (56° N, 85° E) in the height range from 0.5 to 7.5 km are presented here. Based on observations since April till October 2007 it is shown that in the boundary layer (except of the internal mixing layer) ηβ(532/1064) > ηβ(355/532), and, simultaneously, ησ(532/1064) > ησ(355/532), where η i are the values of the Ågström parameter for the respective coefficients. Such a distribution of the Ågström parameters is caused by prevalence of small particles with mean geometric radius R f < 0.15 μm in the volume distribution. On the contrary, in the free troposphere ηβ(532/1064) < ηβ(355/532) and ησ(532/1064) < ησ(355/532). Hence, R f > 0.15 μm, and the contribution of large particles is governing. In the boundary layer, the lidar ratio decreases with increasing wavelength; the average values are 59.7 (15) sr at 355 nm, 51.1 (8.3) sr at 532 nm, and 47.3 (13.5) sr at 1064 nm. In the free troposphere, the wavelength behavior of the lidar ratio can be different; the average values are 50.4 (8.5) sr at 355 nm, 49.5 (5.7) sr at 532 nm, and 55.3 (10) sr at 1064 nm. The aerosol contribution of the free troposphere to the total aerosol optical depth grows with decreasing boundary layer height; on average, it is 22 (17)% at 355 nm, 27 (19)% at 532 nm, and 34 (22)% at 1064 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of Global Aerosol Models Using Cluster Analysis of Aerosol Robotic Network (AERONET) Measurements,” Geophys. Res. 110, 14 (2005).

    Article  Google Scholar 

  2. C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of Aerosol and Spectral Lidar and Back-scatter and Extinction Ratios of Keys Aerosol Types Derived from Selected Aerosol Robotic Network Locations,” J. Geophys. Res. 110, 11 (2005).

    Article  Google Scholar 

  3. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Mucoz, B. Veihelmann, W. J. Van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The Application of Spheroid Models to Account for Aerosol Particle Nonsphericity in Remote Sensing of Desert Dust,” J. Geophys. Res. 111, D11208 (2006).

    Article  ADS  Google Scholar 

  4. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-Type-Dependent Lidar Ratios Observed with Raman Lidar,” J. Geophys. Res. 112, D16202 (2007).

    Article  ADS  Google Scholar 

  5. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network”, in: Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2001), pp. 155–158.

  6. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-Based Network Observation of Asian Dust Events of April 1998 in East Asia,” J. Geophys. Res., D 106(16) 18345–18359 (2001).

    Article  ADS  Google Scholar 

  7. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

    Article  ADS  Google Scholar 

  8. V. Matthias, J. Bösenberg, V. Freudenthaler, A. Amodeo, D. Balis, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komduem, S. Kreipl, R. Matthey, I. Mattis, V. Rizi, J. A. Rodriguez, V. Simeonov, and X. Wang, “Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).

    Article  ADS  Google Scholar 

  9. I. Mattis, A. Ansmann, D. Müller, U. Wandinger, and D. Althausen, “Multilayer Aerosol Observations with Dual-Wavelength Raman Lidar in the Framework of EARLINET,” J. Geophys. Res. 109, D13203 (2004).

    Article  ADS  Google Scholar 

  10. A. Ansmann, F. Wagner, D. Müller, D. Althausen, A. Herber, W. Von Hoyningen-Huene, and U. Wandinger, “European Pollutions during ACE 2: Optical Particle Properties Inferred from Multiwavelength Lidar and Star-Sun Photometry,” J. Geophys. Res. 107, D15, (2002).

    Google Scholar 

  11. Z. Liu, A. Omar, M. Vaugham, J. Hair, Ch. Kittaka, Y. Hu, K. Powell, Ch. Trepte, D. Winker, Ch. Hostetler, R. Ferrare, and R. Pierce, J. Geophys. Res. 113, D07207 (2008).

    Article  ADS  Google Scholar 

  12. S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the Vertical Distribution of Troposphere Aerosol Layers Based on the Data of Multifrequency Raman Lidar Sensing: Part 1. Methods of Optical Parameter Retrieval,” Atmos. Ocean. Opt. 22(3), 302–315 (2009).

    Article  Google Scholar 

  13. A. Ångström “On the Atmospheric Transmission of Sun Radiation and on Dust in the Air,” Geogr. Ann., No. 11, 156–166 (1929).

    Google Scholar 

  14. S. V. Samoilova, “Spectral Behavior of Optical Coefficients and Microphysical Characteristics of Aerosol Particles,” Atmos. Ocean. Opt. 24(4), 362–368 (2011).

    Article  Google Scholar 

  15. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Buffon, “Aerosol and Cloud Backscatter at 1.06, 1.54 and 0.53 μm by Airborne Hard-Target Calibrated Nd:YAG/Methane Raman Lidar,” Appl. Opt. 36(15), 3475–3490 (1997).

    Article  ADS  Google Scholar 

  16. F. G. Fernald, “Analysis of Atmospheric Lidar Observations: Some Comments,” Appl. Opt. 23(5), 652–653 (1984).

    Article  ADS  Google Scholar 

  17. V. A. Kovalev, “Lidar Measurements of the Vertical Aerosol Extinction Profiles with Range-Dependent Backscatter-to-Extinction Ratios,” Appl. Opt. 32(30), 6053–6065 (1993).

    Article  ADS  Google Scholar 

  18. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. Videnov Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms,” Appl. Opt. 43(4), 977–989 (2004).

    Article  ADS  Google Scholar 

  19. S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigation of the Vertical Distribution of Tropospheric Aerosol Layers from Multifrequency Laser Sensing Data. Part 2: The Vertical Distribution of Optical Aerosol Characteristics in the Visible Region,” Atmos. Ocean. Opt. 23(2), 95–105 (2010).

    Article  Google Scholar 

  20. www.ready.noaa.gov

  21. V. V. Zuev, A. V. El’nikov, and V. D. Burlakov, Laser Sensing of the Middle Atmosphere (RASKO, Tomsk, 2002) [in Russian].

    Google Scholar 

  22. S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, “Peculiarities of Many-Year Variations of Atmospheric Aerosol Optical Thickness and Estimates of Influence of Different Factors,” Atmos. Ocean. Opt. 21(7), 540–545 (2008).

    Google Scholar 

  23. B. D. Belan, A. I. Grishin, G. G. Matvienko, and I. V. Samokhvalov, Spatial Variability of the Parameters of Atmospheric Aerosol (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  24. M. V. Panchenko, S. A. Terpugova, and A. G. Tumakov, “Annual Variations of Submicron Aerosol Fraction as Assessed from the Data of Airborne Nephelometric Measurements,” Atmos. Res. 41, 203–215 (1996).

    Article  Google Scholar 

  25. I. Veselovskii, D. N. Whiteman, A. Kolgotin, E. Andrews, and M. Korenskii, “Demonstration of Aerosol Property Profiling by Multi-Wavelength Lidar under Varying Relative Humidity Conditions,” J. Atmos. and Ocean. Technol. 26(8), 1543–1557 (2009).

    Article  ADS  Google Scholar 

  26. A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, Ch.H. Trepte, R. A. Ferrare, K.-P. Lee, Ch. A. Hostetler, Ch. Kittaka, R. R. Rogers, R. E. Kuehn, and Zh. Lie, “The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm,” J. Atmos. Ocean. Technol. 26(10), 1994–2014 (2009).

    Article  ADS  Google Scholar 

  27. I. Mattis, D. Müller, A. Ansmann, U. Wandinger, J. Preibler, P. Seifert, and M. Tesche, “Ten Years of Multiwavelength Raman Lidar Observations of Free-Tropospheric Aerosol Layers over Central Europe: Geometrical Properties and Annual Cycle,” J. Geophys. Res. 113, D20202 (2008).

    Article  ADS  Google Scholar 

  28. Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Automated Multiwave Meter of Spectral Transmission of the Ground Layer of the Atmosphere,” Atmos. Ocean. Opt. 5(6), 423–425 (1992).

    Google Scholar 

  29. Yu. A. Phkalagov, V. N. Uzhegov, D. M. Kabanov, and S. M. Sakerin, “Diurnal Dynamics of the Optical Radiation Extinction by Aerosol as Studied in Hazes along the Near-Ground and Slant Paths,” Atmos. Ocean. Opt. 16(8), 652–657 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Samoilova, Yu.S. Balin, G.P. Kokhanenko, I.E. Penner, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilova, S.V., Balin, Y.S., Kokhanenko, G.P. et al. Investigation of the vertical distribution of tropospheric aerosol layers using the data of multiwavelength lidar sensing. Part 3. Spectral peculiarities of the vertical distribution of the aerosol optical characteristics. Atmos Ocean Opt 25, 208–215 (2012). https://doi.org/10.1134/S1024856012030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856012030098

Keywords

Navigation