Skip to main content

Estimation of aerosol absorption under summer conditions of Western Siberia from sun photometer data

Abstract

We tested the methods for retrieving the aerosol single scattering albedo and scattering phase function (asymmetry factor), developed by the authors earlier, from measurements of clear-sky radiance in the solar almucantar at the Tomsk station of the AERONET photometric network in 2003–2009. It is shown that, under conditions of strong atmospheric turbidity (fires), the results obtained using the suggested approach and the Dubovik-King algorithm agree well. Under typical summer conditions of Western Siberia, the average single scattering albedo in the blue and green wavelength regions are ∼0.90–0.92 and close to those presented in the WCP and OPAC models for continental aerosol.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. V. Bedareva and T. B. Zhuravleva, “Retrieval of Aerosol Scattering Phase Function and Single Scattering Albedo According to Data of Radiation Measurements in Solar Almucantar: Numerical Simulation,” Atmos. Ocean. Opt. 24(4), 373–385 (2011).

    Article  Google Scholar 

  2. 2.

    O. Dubovik and M. King, “A Flexible Inversion Algorithm for Retrieval Aerosol Optical Properties from Sun and Sky Radiance Measurements,” J. Gephys. Res., D 105(16), 20673–20696 (2000).

    ADS  Article  Google Scholar 

  3. 3.

    S. M. Sakerin, S. A. Beresnev, S. Yu. Gorda, D. M. Kabanov, G. I. Kornienko, Yu. I. Markelov, A. V. Mikhalev, S. V. Nikolashkin, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, A. Smirnov, M. A. Tashchilin, S. A. Turchinovich, Yu. S. Turchinovich, B. Holben, and T. A. Eremina, “Characteristics of the Annual Behavior of the Spectral Aerosol Optical Depth of the Atmosphere under Conditions of Siberia,” Atmos. Ocean. Opt. 22(4), 446–456 (2009).

    Article  Google Scholar 

  4. 4.

    B. N. Holben, T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik, “AERONET’s Version 2.0 Quality Assurance Criteria,” Proc. SPIE 6408, 64080Q (2006).

    ADS  Article  Google Scholar 

  5. 5.

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998)

    Article  Google Scholar 

  6. 6.

    A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, “Cloud-Screening and Quality Control Algorithms for the AERONET Database,” Remote Sens. Environ. 73(3), 337–349 (2000).

    Article  Google Scholar 

  7. 7.

    V. E. Pavlov, Yu. Ya. Matyushchenko, and V. K. Oshlakov, “Selecting the AERONET Data. Part II: Method of Correction for Halos,” Atmos. Ocean. Opt. 20(2), 171–176 (2007).

    Google Scholar 

  8. 8.

    T. B. Zhuravleva, T. V. Bedareva, D. M. Kabanov, I. M. Nasrtdinov, and S. M. Sakerin, “Specific Features of Angular Characteristics of Diffuse Solar Radiation in a Little-Cloud Atmosphere,” Atmos. Ocean. Opt. 22(8), 607–616 (2009).

    Article  Google Scholar 

  9. 9.

    Yu. Ya. Matyushchenko, V. K. Oshlakov, and V. E. Pavlov, “Selecting the AERONET Data. Part I: Substantiation of the Techniques,” Atmos. Ocean. Opt. 19(4), 237–243 (2006).

    Google Scholar 

  10. 10.

    G. S. Zinchenko, Yu. Ya. Matyushchenko, V. E. Pavlov, and S. V. Smirnov, “On Selection of AERONET Data. Part III: Cloudiness and Sun Photometers Efficiency in South Siberia Regions,” Atmos. Ocean. Opt. 21(1), 13–16 (2008).

    Google Scholar 

  11. 11.

    S. M. Sakerin, V. V. Veretennikov, T. B. Zhuravleva, D. M. Kabanov, and I. M. Nasrtdinov, “Comparative Analysis of Aerosol Radiation Parameters in Conditions of Fire Smokes and Usual Conditions,” Optika Atmos. Okeana 23(6), 451–461 (2010).

    Google Scholar 

  12. 12.

    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Air Force Geophysics Laboratory. AFGL-TR-86-0110, Environ. Res. Paper, 1986, no. 954.

  13. 13.

    O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements,” J. Geophys. Res., D 105(8), 9791–9806 (2000).

    ADS  Article  Google Scholar 

  14. 14.

    Mian Chin, T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets, “Light Absorption by Pollution, Dust, and Biomass Burning Aerosols: AGlobal Model Study and Evaluation with AERONET Measurements,” Ann. Geophys. 27(9), 3439–3464 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral Absorption Properties of Atmospheric Aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

    ADS  Article  Google Scholar 

  18. 18.

    R. W. Bergstrom, P. Pilewskie, J. Pommier, M. Rabbette, P. B. Russell, B. Schmid, J. Redemann, A. Higurashi, T. Nakajima, and P. K. Quinn, “Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia,” J. Geophys. Res. 109, 15 (2003).

    Google Scholar 

  19. 19.

    M. V. Panchenko, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “Estimation of Aerosol Optical Parameters Based on the Empirical Model for a Summer in Western Siberia,” in Proc. of XVII Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  20. 20.

    A Preliminary Cloudless Standard Atmosphere for Radiation Computation. World Climate Research Programme. WCP-112, WMO/TD, 1986, no. 24.

  21. 21.

    M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteorol. Soc. 79(5), 831–844 (1998).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. Bedareva.

Additional information

Original Russian Text © T.V. Bedareva, T.B. Zhuravleva, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bedareva, T.V., Zhuravleva, T.B. Estimation of aerosol absorption under summer conditions of Western Siberia from sun photometer data. Atmos Ocean Opt 25, 216–223 (2012). https://doi.org/10.1134/S1024856012030025

Download citation

Keywords

  • Aerosol Optical Depth
  • Asymmetry Factor
  • Single Scat Tering Albedo
  • Scatter Phase Function
  • Retrieval Error