Microphysical extrapolation in the problem of inversion of spectral measurements of aerosol optical depth

Abstract

Defining characteristics of the aerosol size distribution from spectral measurements of the aerosol optical depth (AOD) are considered, with allowance for a low information content of the solution in the fine aerosol region. A correction algorithm for AOD inversion results is suggested; it is based on the microphysical extrapolation procedure and allows the contribution of fine aerosols to be taken into account within existing models. This approach is used to solve the inverse problem of solar photometry by the integral distribution method; it is investigated in closed numerical experiments.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. S. Shifrin and A. Ya. Perel’man, “Determination of the Spectrum of Particles of a Disperse System from Data on Its Transparency,” Optika i Spektroskopiya 15, 533–542 (1963).

    Google Scholar 

  2. 2.

    G. Yamamoto and M. Tanaka, “Determination of Aerosol Size Distribution from Spectral Attenuation Measurements,” Appl. Opt. 8(2), 447–453 (1969).

    ADS  Article  Google Scholar 

  3. 3.

    B. S. Kostin, E. V. Makienko, and I. E. Naats, “Study of the Information Content and Solution of Inverse Problems during Optical Sounding of Atmospheric Aerosol,” in Optical Wave Propagation in the Atmosphere (Nauka, Novosibirsk, 1975) [in Russian], pp. 208–211.

    Google Scholar 

  4. 4.

    B. S. Kostin and I. E. Naats, “Determination of Size Spectrum of Aerosol Particles from Optical Measurements Using Regularization Methods,” in Laser Sounding of the Atmosphere (Nauka, Moscow, 1976) [in Russian], pp. 94–98.

    Google Scholar 

  5. 5.

    E. V. Makienko and I. E. Naats, “About An Algorithm for Inversion of Spectral Optical Measurements,” in Questions of Laser Sounding of the Atmosphere (Nauka, Novosibirsk, 1976) [in Russian], pp. 115–121.

    Google Scholar 

  6. 6.

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “’AERONET’-A federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ 66(1), 1–16 (1998).

    Article  Google Scholar 

  7. 7.

    O. Dubovik and M. D. King, “A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements,” J. Geophys. Res., D 105(16), 20,673 (2000).

    ADS  Article  Google Scholar 

  8. 8.

    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and Yu. S. Turchinovich, “System for Network Monitoring of the Atmospheric Constituents Active in Radiative Processes. Part 1. Sun Photometers,” Atmos. Ocean. Opt. 17(4), 314–320 (2004).

    Google Scholar 

  9. 9.

    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information System for Network Solar Photometers,” Atmos. Ocean. Opt. 22(1), 121–127 (2009).

    Article  Google Scholar 

  10. 10.

    V. A. Smerkalov, “Approximation of the Mean Size Distribution of Aerosol Particles,” Izv. AN SSSR, Fiz. Atmos. Okeana 20(4), 317–321 (1984).

    ADS  Google Scholar 

  11. 11.

    V. A. Smerkalov, Applied Atmospheric Optics (Gidrometeoizdat, St.-Petersburg, 1997) [in Russian].

    Google Scholar 

  12. 12.

    P. Tunved, H.-C. Hansson, M. Kulmala, P. Aalto, Y. Viisanen, H. Karlsson, A. Kristensson, E. Swietlicki, M. Dal Maso, J. Ström, and M. Komppula, “One Year Boundary Layer Aerosol Size Distribution Data from Five Nordic Background Stations,” Atmos. Chem. Phys. 3(6), 2183–2205 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    T. Hussein, A. Puustinen, P. P. Aalto, J. M. Mäkelä, K. Hämeri, and M. Kulmala, “Urban Aerosol Number Size Distributions,” Atmos. Chem. Phys. 4(2), 391–411 (2004).

    ADS  Article  Google Scholar 

  14. 14.

    M. Yu. Arshinov and B. D. Belan, “Diurnal Behavior of the Concentration of Fine and Ultrafine Aerosol,” Atmos. Ocean. Opt. 13(11), 909–916 (2000).

    Google Scholar 

  15. 15.

    V. V. Veretennikov, “Inverse Problems in Sun Photometry for Integral Aerosol Distributions. I. Theory and Numerical Experiment for Submicron Range of Particle Sizes,” Atmos. Ocean. Opt. 19(4), 259–265 (2006).

    Google Scholar 

  16. 16.

    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun Photometer for Scientific Monitoring (Instrumentation, Techniques, Algorithms),” Atmos. Ocean. Opt. 14(12), 1067–1074 (2001).

    Google Scholar 

  17. 17.

    H.C. van de Hulst, Light Scattering by Small Particles (N.Y.: John Wiley & Sons, 1957).

    Google Scholar 

  18. 18.

    V. V. Veretennikov and S. S. Men’shchikova, “Use of a Block-Iterative Algorithm for Retrieving Aerosol Integral Size Distributions from Sun Spectrophotometry Data,” Atmos. Ocean. Opt. 23(4), 375–380 (2010).

    Article  Google Scholar 

  19. 19.

    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (N.Y.: Elsevier, 1969).

    Google Scholar 

  20. 20.

    V. V. Veretennikov, “Inverse Problems in Sun Photometry for Integral Aerosol Distributions. II. Division into Submicron and Coarse Fractions,” Atmos. Ocean. Opt. 19(4), 266–272 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Veretennikov.

Additional information

Original Russian Text © V.V. Veretennikov, S.S. Men’shchikova, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veretennikov, V.V., Men’shchikova, S.S. Microphysical extrapolation in the problem of inversion of spectral measurements of aerosol optical depth. Atmos Ocean Opt 25, 135–141 (2012). https://doi.org/10.1134/S1024856012020145

Download citation

Keywords

  • Total Cross Section
  • Aerosol Optical Depth
  • Light Attenuation
  • Microstructural Parameter
  • Fine Region