Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule

Abstract

This work considers the verification, systematization, and publication in the W@DIS information system of all published data acquired at the moment by various authors from the analysis of high resolution, ro-vibrational spectra of hydrogen sulfide and its isotopologues. The system interface allows prompt and efficient search for any required information by specified criteria. The W@DIS information system, in its present state, contains the most complete and reliable information on ro-vibrational transitions and energy levels of the hydrogen sulfide molecule as compared with other databases. The data systematized in this work may serve as a source of information for problems of theoretical spectroscopy and chemistry, atmospheric problems, and other applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Cou- dert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S.T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. and Radiat. Transfer. 110(9–10), 533–572 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    N. Jacquinet-Husson, N. A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, D. V. L. Daumont, M. R. De Backer-Barilly, G. Di. Lonardo, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Régalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K. M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, Vl. G. Tyuterev, A. J. Vander, P. Varanasi, and G. Wagner, “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. and Radiat. Transfer. 109(6), 1043–1059 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    A. I. Privezentsev, Candidate’s Dissertation in Engineering (IAO SB RAS, Tomsk, 2009).

    Google Scholar 

  4. 4.

    H. Partridge and D. W. Schwenke, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive ab initio Calculations and Experimental Data,” J. Chem. Phys. 106(11), 4618–4639 (1997).

    ADS  Article  Google Scholar 

  5. 5.

    H. Partridge and D. W. Schwenke, “Convergence Testing of the Analytic Representation of an ab initio Dipole Moment Function for Water: Improved Fitting Yields Improved Intensities,” J. Chem. Phys. 113(16), 6592–6597 (2000).

    ADS  Article  Google Scholar 

  6. 6.

    A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, “Fourier Transform Absorption Spectra of H2 17O and H2 18O in the 8000–9400 cm−1 Spectral Region,” J. Mol. Spectrosc. 237(1), 53–62 (2006).

    ADS  Article  Google Scholar 

  7. 8.

    A. D. Bykov, B. A. Voronin, A. V. Kozodoev, N. A. Lavrent’ev, O. B. Rodimova, and A. Z. Fazliev, “Information System for Molecular Spectroscopy. 1. Structure of Information Resources,” Atmos. Ocean. Opt. 17(11), 816–820 (2004).

    Google Scholar 

  8. 9.

    A. V. Kozodoev, A. I. Privezentsev, and A. Z. Fazliev, “Information System for Molecular Spectroscopy. 3. Molecular Energy Levels,” Atmos. Ocean. Opt. 20(9), 736–740 (2007).

    Google Scholar 

  9. 10.

    N. A. Lavrent’ev, A. I. Privezentsev, and A. Z. Fazliev, “Informational System for the Solution of Molecular Spectroscopy Problems. 4. Transitions in Molecules of C2v and Cs Symmetry,” Atmos. Ocean. Opt. 21(11), 836–841 (2008).

    Google Scholar 

  10. 11.

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. Zobov, L. Daumont, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. and Radiat. Transfer. 110(9–10), 573–596 (2009).

    ADS  Article  Google Scholar 

  11. 12.

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campar- gue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, Hu. Shui-Ming, S. N. Mikhailenko, and B. A. Voronin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O,” J. Quant. Spectrosc. and Radiat. Transfer. 111(15), 2160–2184 (2010).

    ADS  Article  Google Scholar 

  12. 13.

    P. Jensen, “An Introduction to the Theory of Local Mode Vibrations,” J. Mol. Phys. 98(17), 1253–1285 (2000).

    ADS  Article  Google Scholar 

  13. 14.

    A. Z. Fazliev, A. G. Csaszar, and J. Tennyson, “W@DIS: Water Spectroscopy Information System,” in Proceedings of the 10th HITRAN Database Conference (2008), p. 38–39.

  14. 15.

    A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, O. B. Rodimova, S. D. Tvorogov, M. V. Tonkov, A. Z. Fazliev, and N. N. Filippov, Information Aspects of Molecular Spectroscopy (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].

  15. 16.

    Ch. A. Burrus, Jr. and W. Gordy, “One-to-Two Millimeter Wave Spectroscopy. II. H2S,” Phys. Rev. 92(2), 274–277 (1953).

    ADS  Article  Google Scholar 

  16. 17.

    R. E. Cupp, R. A. Kempf, and J. J. Gallagher, “Hyperfine Structure in the Millimeter Spectrum of Hydrogen Sulfide: Electric Resonance Spectroscopy on Asymmetric-Top Molecules,” Phys. Rev. 171(1), 60–69 (1968).

    ADS  Article  Google Scholar 

  17. 18.

    C. A. Huiszoon, “High Resolution Spectrometer for the Shorter Millimeter Wavelength Region,” Rev. Sci. Instrum. 42(4), 477–481 (1971).

    ADS  Article  Google Scholar 

  18. 19.

    Paul Helminger, Robert L. Cook, and Frank C. De Lucia, “Microwave Spectrum and Centrifugal Distortion Effects of H2S,” J. Chem. Phys. 56(9), 4581 (1972).

    ADS  Article  Google Scholar 

  19. 20.

    J.-M. Flaud, C. Camy-Peyret, and J. W. C. Johns, “The Far-Infrared Spectrum of Hydrogen Sulphide. The (000) Rotational Constants H 322 S H 332 S and H 342 S” Can. J. Phys. 61, 1462–1473 (1983).

    ADS  Article  Google Scholar 

  20. 21.

    V. Burenin, T. M. Fevral’skikh, A. A. Mel’nikov, and S. M. Shapin, “Microwave Spectrum of the Hydrogen Sulfide Molecule H 322 S in the Ground State,” J. Mol. Spectrosc. 109(1), 1–7 (1985).

    ADS  Article  Google Scholar 

  21. 22.

    S. P. Belov, K. M. T. Yamada, G. Winnewisser, L. Poteau, R. Bocquet, J. Demaison, O. Polyansky, and M. Y. Tretyakov, “Terahertz Rotational Spectrum of H2S,” J. Mol. Spectrosc. 173(2), 380–390 (1995).

    ADS  Article  Google Scholar 

  22. 23.

    P. Helminger, F. C. De Lucia, and W. H. Kirchhoff, “Microwave Spectra of Molecules of Astrophysical Interest IV. Hydrogen Sulfide,” J. Phys. Chem. Ref. Data 2(2), 215–223 (1973).

    ADS  Article  Google Scholar 

  23. 24.

    Wm. C. Lane, T. H. Edwards, J. R. Gillis, F. S. Bonomo, and F. J. Murcray, “Analysis of ν2 of H2S,” J. Mol. Spectrosc. 95(2), 365–380 (1982).

    ADS  Article  Google Scholar 

  24. 25.

    L. L. Strow, “Measurement and Analysis of the ν2 Band of H2S: Comparison among Several Reduced Forms of the Rotational Hamiltonian,” J. Mol. Spectrosc. 97(1), 9–28 (1983).

    ADS  Article  Google Scholar 

  25. 26.

    O. N. Ulenikov, A. B. Malikova, M. Koivusaari, S. Alanko, R. Anttila, “High Resolution Vibrational-Rotational Spectrum of H2S in the Region of the ν2 Fundamental Band,” J. Mol. Spectrosc. 176(2), 229–235 (1996).

    ADS  Article  Google Scholar 

  26. 27.

    L. L. Strow, “Line Strength Measurements Using Diode Lasers: the ν2 Band of H2S,” J. Quant. Spectrosc. and Radiat. Transfer. 29(5), 395–406 (1983).

    ADS  Article  Google Scholar 

  27. 28.

    J. R. Gillis and T. H. Edwards, “Analysis of 2ν2, ν1 and ν3 of H2S,” J. Mol. Spectrosc. 85(1), 55–73 (1981).

    ADS  Article  Google Scholar 

  28. 29.

    L. Lechuga-Fossat, J. Flaud, C. Camy-Peyret, and J.W. C. Jones, “The Spectrum of Natural Hydrogen Sulfide between 2150 and 2950 cm−1,” Can. J. Phys. 62(12), 1889–1923 (1984).

    ADS  Article  Google Scholar 

  29. 30.

    L. Brown, J. Crisp, D. Crisp, O. Naumenko, M. Smirnov, L. Sinitsa, and A. Perrin, “The Absorption Spectrum of H2S between 2150 and 4260 cm−1: Analysis of the Position and Intensities in the First (2ν2, ν1 and ν3) and Second (3ν2, ν1 + ν2 and ν2 + ν3) Triad Regions,” J. Mol. Spectrosc. 188(2), 148–174 (1998).

    ADS  Article  Google Scholar 

  30. 31.

    L. E. Snyder and T. H. Edwards, “Simultaneous Analysis of the (110) and (011) Bands of Hydrogen Sulfide,” J. Mol. Spectrosc. 31(1–13), 347–361 (1969).

    ADS  Article  Google Scholar 

  31. 32.

    O. Ulenikov, G. Onopenko, M. Koivusaari, S. Alanko, and R. Anttila, “High Resolution Fourier Trasform Spectrum of H2S in the 3300–4080 cm−1 Region,” J. Mol. Spectrosc. 176(2), 236–250 (1996).

    ADS  Article  Google Scholar 

  32. 33.

    L. R. Brown, J. A. Crisp, D. Crisp, O. V. Naumenko, M. A. Smirnov, and L. N. Sinitsa, “First Hexad of Interacting States of H2S Molecule,” in Proc. SPIE 3090, 111–113 (1997).

    ADS  Article  Google Scholar 

  33. 34.

    E. R. Polovtseva, Candidate’s Dissertation in Mathematics and Physics (IAO SB RAS, Tomsk, 2006).

  34. 35.

    L. L. Lechuga-Fossat, J. F. C. Camy-Peyret, P. Arcas, and M. Cuisenier, “The H2S Spectrum in the 1.6 μm Spectral Region,” Mol. Phys. 61(1), 23–32 (1987).

    ADS  Article  Google Scholar 

  35. 36.

    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Hydrogen Sulfide Absorption Spectrum in the 5700–6600 cm−1 spectral region,” Proc. SPIE 5311, 59–67 (2003).

    ADS  Article  Google Scholar 

  36. 37.

    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, O. V. Gromova, L.-Y. Hao, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of H2S in the Region of the Second Hexade,” J. Mol. Spectrosc. 234(2), 270–278 (2005).

    ADS  Article  Google Scholar 

  37. 38.

    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, O. V. Gromova, L.-Y. Hao, and S.-M. Hu, “On the study of High Resolution Rovibrational Spectrum of H2S in the Region of 7300–7900 cm−1,” J. Mol. Spectrosc. 226(1), 57–70 (2004).

    ADS  Article  Google Scholar 

  38. 39.

    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Absorption Spectrum of H2S between 7200 and 7890 cm−1,” Proc. SPIE 5396, 42–48 (2004).

    Google Scholar 

  39. 40.

    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, S. V. Grebneva, W.-P. Deng, O. V. Gromova, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of H2S in the Region of 8500–8900 cm−1,” J. Mol. Spectrosc. 228(1), 110–119 (2004).

    ADS  Article  Google Scholar 

  40. 41.

    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Hydrogen Sulfide Absorption Spectrum in the 8400–8900 cm−1 Spectral Region,” Proc. SPIE 5743, 1–7 (2004).

    ADS  Article  Google Scholar 

  41. 42.

    A. Bykov, O. Naumenko, M. Smirnov, L. Sinitsa, L. Brown, J. Crisp, and D. Crisp, “The Infrared Spectrum of H2S from 1 to 5 μm,” Can. J. Phys. 72(11–12), 989–999 (1994)

    ADS  Article  Google Scholar 

  42. 43.

    Y. Ding, O. Naumenko, Hu Shui-Ming, Zhu Qingshi, E. Bertseva, and A. Campargue, “The Absorption Spectrum of H2S between 9540 and 10000 cm−1 by Intracavity Laser Absorption Spectroscopy with a Vertical External Cavity Surface Emitting Laser,” J. Mol. Spectrosc. 217(2), 222–223 (2003).

    ADS  Article  Google Scholar 

  43. 44.

    O. Naumenko and A. Campargue, “Local Mode Effects in the Absorption Spectrum of H2S between 10780 and 11330 cm−1,” J. Mol. Spectrosc. 209(2), 242–253 (2001).

    ADS  Article  Google Scholar 

  44. 45.

    O. Vaittinen, L. Biennier, A. Campargue, J. Flaud, and L. Halonen, “Local Mode Effects on the High-Resolution Overtone Spectrum of H2S around 12500 cm−1,” J. Mol. Spectrosc. 184(2), 288–299 (1997).

    ADS  Article  Google Scholar 

  45. 46.

    A. Campargue and J. Flaud, “The Overtone Spectrum of H2 32S near 13200 cm−1,” J. Mol. Spectrosc. 194(1), 43–51 (1999).

    ADS  Article  Google Scholar 

  46. 47.

    J. Flaud, O. Vaittinen, and A. Campargue, “The H2S Spectrum around 0.7 μm,” J. Mol. Spectrosc. 190(2), 262–268 (1998).

    ADS  Article  Google Scholar 

  47. 48.

    O. Naumenko and A. Campargue, “H2S: First Observation of the (70±,0) Local Mode Pair and Updated Global Effective Vibrational Hamiltonian,” J. Mol. Spectrosc. 210(2), 224–232 (2001).

    ADS  Article  Google Scholar 

  48. 49.

    R. Großkloß, S. B. Rai, R. Stuber, and W. Demtröder, “Diode Laser Overtone Spectroscopy of Hydrogen Sulfid,” Chem. Phys. Lett. 229(6), 609–615 (1994).

    ADS  Article  Google Scholar 

  49. 50.

    J.-M. Flaud, R. Großkloß, S. B. Rai, R. Stuber, W. Demtröder, D. A. Tate, L.-G. Wang, and Th. F. Gallaher, “Diode Laser Spectroscopy of H2 32S around 0.82 μm,” J. Mol. Spectrosc. 172(1), 275–281 (1995).

    ADS  Article  Google Scholar 

  50. 51.

    O. Naumenko and E. Polovtseva, “Labeling of Pure Vibrational States of Water-Like Molecules,” Proc. SPIE, 7296-01 (2009).

  51. 52.

    O. V. Naumenko and E. R. Polovtseva, “Database of the Hydrogen Sulfide Absorption in the 4400–11400 cm−1 Region”, Atmos. Ocean. Opt. 16(11), 900–906 (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. R. Polovtseva.

Additional information

Original Russian Text © E.R. Polovtseva, N.A. Lavrentiev, S.S. Voronina, O.V. Naumenko, A.Z. Fazliev, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polovtseva, E.R., Lavrentiev, N.A., Voronina, S.S. et al. Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule. Atmos Ocean Opt 25, 157–165 (2012). https://doi.org/10.1134/S1024856012020133

Download citation

Keywords

  • Hydrogen Sulfide
  • Oceanic Optic
  • Molecular Spectroscopy
  • Backward Wave Tube
  • Experimental Energy Level