Skip to main content
Log in

Evolution of nanometer-size aerosol in dry and humid environment under the influence of corona discharge

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of experimental research into the impact of corona-discharge-generated ions on the evolution of the spectrum of nanometer-size aerosol particles are presented. It is shown that the generation of a corona discharge in the absence of the formed airborne dispersion is accompanied by the spectrum shift of aerosol sizes toward an increase in their average size. It was also shown that the degree of impact of the corona discharge upon the evolution of aerosol spectral composition is mainly determined by local humidity. Furthermore, the generation of a corona discharge is accompanied by the formation of new fine aerosols (less than 3 nm), the concentration of which exceeds the ambient concentration by an order of magnitude (more than 105 1/cm3). The effect of the unipolar corona discharge on the particle spectrum in the aerosol chamber, filled with water aerosol (fog), was elucidated, namely, a decrease in aerosol concentration to the complete disappearance of all aerosols including those in the nanometer range, was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Turco, J.-X. Zhao, and F. Yu, “A New Source of Tropospheric Aerosols: Ion-Ion Recombination,” Geophys. Rev. Lett. 25(5), 635–638 (1998).

    Article  ADS  Google Scholar 

  2. M. Kulmala, I. Riipinen, T. Nieminen, M. Hulkkonen, L. Sogacheva, H. E. Manninen, P. Paasonen, T. Petaja, M. Dal Maso, P. P. Aalto, A. Viljanen, I. Usoskin, R. Vainio, S. Mirme, A. Mirme, A. Minikin, A. Petzold, U. Horrak, C. Plass-Dulmer, W. Birmili, and V.-M. Kerminen, “Atmospheric Data Over a Solar Cycle: No Connection Between Galactic Cosmic Rays and New Particle Formation,” Atmos. Chem. Phys. 10(4), 1885–1898 (2010).

    Article  ADS  Google Scholar 

  3. P. C. Ray, H. Yu, and P. P. Fu, “Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs,” J. Environ. Sci. Health, Pt. C, Environ., Carcinog. Ecotoxicol. Rev. 27(1), 1–35 (2009).

    Google Scholar 

  4. A. B. Knol, J. J. de Hartog, H. Boogaard, P. Slottje, J. P. van der Sluijs, E. Lebret, F. R. Cassee, A. Wardekker, J. G. Ayres, P. J. Borm, B. Brunekreef, K. Donaldson, F. Forastiere, S. T. Holgate, W. G. Kreyling, B. Nemery, J. Pekkanen, V. Stone, H-E. Wichmann, G. Hoek, “Expert Elicitation on Ultrafine Particles: Likelihood of Health Effects and Causal Pathways,” Particle and Fibre Toxicol. 6(19), 1–16 (2009).

    Google Scholar 

  5. J. W. Card, D. C. Zeldin, J. C. Bonner, and E. R. Nestmann, “Pulmonary Applications and Toxicity of Engineered Nanoparticles,” Amer. J. Physiol.—Lung Cell. Mol. Physiol. 295(3), L400–L411 (2008).

    Article  Google Scholar 

  6. M. B. Enghoff and H. Svensmark, “The Role of Atmospheric Ions in Aerosol Nucleation—A Review,” Atmos. Chem. Phys. Discuss. 8, 7477–7508 (2008).

    Article  ADS  Google Scholar 

  7. R. Hackam and H. Akiyama, “Air Pollution Control by Electrical Discharges,” IEEE Trans. on Dielectrics and Electrical Insulation 7(5), 654–683 (2000).

    Article  Google Scholar 

  8. D. Mariotti and R. M. Sankaran, “Microplasmas for Nanomaterials Synthesis,” J. Phys., D 43(32), 323001–3230022 (2010).

    Article  Google Scholar 

  9. M. Kulmala and V.-M. Kerminen, “On the Formation and Growth of Atmospheric Nanoparticles,” Atmos. Res. 90(2–4), 132–150 (2008).

    Article  Google Scholar 

  10. A. Ankilov, A. Baklanov, M. Colhoun, K.-H. Enderle, J. Gras, Yu. Julanov, D. Kaller, A. Lindner, A. A. Lushnikov, R. Mavliev, F. McGovern, A. Mirme, T. C. O’Connor, J. Podzimek, O. Preining, G. P. Reischl, R. Rudolf, G. J. Sem, W. W. Szymanski, E. Tamm, A. E. Vrtala, P. E. Wagner, W. Winklmayr, and V. Zagaynov, “Intercomparison of Number Concentration Measurements by Various Aerosol Particle Counters,” Atmos. Res. 62(3–4), 177–207 (2002).

    Article  Google Scholar 

  11. E. O. Knutson, “History of Diffusion Batteries in Aerosol Measurements,” Aerosol Sci. and Technol. 31(2), 83–128 (1999).

    Article  Google Scholar 

  12. P. Hvelplund, U. Kadhane, S. B. Nielsen, S. Panja, and K. Stochkel, “On the Formation of Water-Containing Negatively Charged Clusters from Atmospheric Pressure Corona Discharge in Air,” Int. J. Mass Specrometry 292(1–3), 48–52 (2010).

    Article  Google Scholar 

  13. V. B. Lapshin, M. Yu. Yablokov, and A. A. Palei, “Vapor Pressure over a Charged Drop,” Rus. J. Phys. Chem. 76(10), 1727–1729 (2002).

    Google Scholar 

  14. F. Yu, “Modified Kelvin-Thomson Equation Considering Ion-Dipole Interaction: Comparison with Observed Ion-Clustering Enthalpies and Entropies,” J. Chem. Phys. 122(8), 084503 (2005).

    Article  ADS  Google Scholar 

  15. V. V. Smirnov, A. V. Savchenko, and V. N. Ivanov, “Modification of Condensation Nuclei under Energy Impacts. 1. Ion-Stimulated Nucleation,” Atmos. Ocean. Opt. 19(5), 356–366 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.B. Lapshin, A.A. Paley, A.V. Balyshev, I.A. Boldyrev, S.N. Dubtsov, L.I. Tolpygin, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshin, V.B., Paley, A.A., Balyshev, A.V. et al. Evolution of nanometer-size aerosol in dry and humid environment under the influence of corona discharge. Atmos Ocean Opt 25, 171–175 (2012). https://doi.org/10.1134/S1024856012020108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856012020108

Keywords

Navigation