Radiation from a diffuse corona discharge in atmospheric-pressure air


Optical and X-radiation from a corona discharge in atmospheric-pressure air is investigated. Spectra of the optical radiation in the range 200–850 nm are obtained under various parameters of the voltage pulse. It was shown that an increase in the voltage pulse changes the corona discharge mode so that the discharge becomes a source of UV radiation, not only from nitrogen 2+ bands, but also from the cathode material. It was also shown that the formation of diffuse corona discharges in a non-uniform electric field under high pressure is conditioned by fast electrons and X-ray generation. It was determined that fast electrons originating from discharges in air under atmospheric pressure generate 525-eV photons from the K-shell of oxygen. Calculations have shown that the photons can effectively initiate new electrons near areas of strong fields. This process explains the formation of types of diffuse discharge for a positive-polarity electrode with a small radius of curvature at atmospheric pressure, and of a fast-moving cathode streamer.

This is a preview of subscription content, log in to check access.


  1. 1.

    Dzh. Barri, Ball Lightning and Bead Lightning (Mir, Moscow, 1983) [in Russian].

    Google Scholar 

  2. 2.

    I. P. Stakhanov, About Physical Nature of Ball Lightning (Nauchnyi mir, Moscow, 1996) [in Russian].

    Google Scholar 

  3. 3.

    E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  4. 4.

    Yu. P. Raizer, Physics of Gas Discharge (“Intellect”, Dolgoprudnyi, 2009) [in Russian].

    Google Scholar 

  5. 5.

    Yu. S. Akishev, M. E. Grushin, A. A. Deryugin, A. P. Napartovich, M. V. Pan’kin, and N. I. Trushkin, “Self-Oscillations of a Positive Corona in Nitrogen,” J. Phys., D 32(18), 2399–2409 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    V. V. Bratchikov, K. A. Gagarinov, I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovenko, “About X-Radiation at Volume Discharges in Atmospheric-Pressure Air,” Tech. Phys. 77(7), 856–864 (2007).

    Article  Google Scholar 

  7. 7.

    J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, “A Study of X-Ray Emission from Laboratory Sparks in Air at Atmospheric Pressure,” J. Geophys. Res. 113, D23207 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    C. V. Nguyen, A. P. J. van Deursen, and U. M. Elbert, “Multiple X-Ray Bursts from Long Discharges in Air,” J. Phys., D 41(7), 234012 (2008).

    ADS  Article  Google Scholar 

  9. 9.

    S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the Corona Discharge in Air,” Tech. Phys. 78(7) (2008).

  10. 10.

    M. Rahman, V. Cooray, N. A. Ahmad, J. Nyberg, V. A. Rakov, and S. Sharma, “X-rays from 80-cm Long Sparks in Air,” Geophys. Res. Lett. 35, L06805 (2008), doi: 10.1029/2007GL032678.

    Article  Google Scholar 

  11. 11.

    D. Z. Pai, G. D. Stancu, D. A. Lacoste, and C. O. Laux, “Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure—the Glow Regime,” Plasma Sources Sci. Technol. 18(7), 045030 (2009).

    ADS  Article  Google Scholar 

  12. 12.

    T. Shao, V. F. Tarasenko, C. Zhang, I. D. Kostyrya, H. Jiang, R. Xu, D. V. Rybka, and P. Yan, “Generation of Runaway Electrons and X-Rays in Repetitive Nanosecond Pulse Corona Discharge in Atmospheric Pressure Air,” Appl. Phys. Express. 4(3), 066001 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    V. F. Tarasenko, E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, “Generation of Supershort Avalanche Electron Beams and Formation of Diffuse Discharges in Different Gases at High Pressure,” Plasma Devices and Operation 16(4), 267–298 (2008).

    Article  Google Scholar 

  14. 14.

    T. Shao, C. Zhang, Z. Niu, P. Yan, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and Y. V. Shut’ko, “Diffuse Discharge, Runaway Electron, and X-Ray in Atmospheric Pressure Air in an Inhomogeneous Electrical Field in Repetitive Pulsed Modes,” Appl. Phys. Lett. 98(3), 021503 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    V. F. Tarasenko, “Parameters of a Supershort Avalanche Electron Beam Generated in Atmospheric-Pressure Air,” Plasma Phys. Rep. 37(5), 409–421 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    I. D. Kostyrya and V. F. Tarasenko, “X-Ray Emission from a Low-Current Volume Discharge in Air at Atmospheric Pressure,” Tech. Phys. Lett. 33(5), 424–427 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    Landau, L.D. and Lifshits, E.M., Mechanics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  18. 18.

    H. Kolbenstvedt, “Simple Theory for K-Ionization by Relativistic Electrons,” J. Appl. Phys. 38(12), 4785–4787 (1967).

    ADS  Article  Google Scholar 

  19. 19.

    Physical Magnitudes, Ed. by I.S. Grigor’eva and E.Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  20. 20.

    E. D. Lozannskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  21. 21.

    E. E. Kunhardt and W. W. Byszewski, “Development of Overvoltage Breakdown at High Gas Pressure,” Phys. Rev., A 21(6), 2069–2077 (1980).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. V. Kozyrev.

Additional information

Original Russian Text © A.V. Kozyrev, V.Yu. Kozhevnikov, I.D. Kostyrya, D.V. Rybka, V.F. Tarasenko, D.V. Schitz, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozyrev, A.V., Kozhevnikov, V.Y., Kostyrya, I.D. et al. Radiation from a diffuse corona discharge in atmospheric-pressure air. Atmos Ocean Opt 25, 176–183 (2012). https://doi.org/10.1134/S102485601202008X

Download citation


  • Voltage Pulse
  • Corona Discharge
  • Runaway Electron
  • Coaxial Line
  • Ball Lightning