Atmospheric and Oceanic Optics

, Volume 25, Issue 2, pp 176–183 | Cite as

Radiation from a diffuse corona discharge in atmospheric-pressure air

  • A. V. Kozyrev
  • V. Yu. Kozhevnikov
  • I. D. Kostyrya
  • D. V. Rybka
  • V. F. Tarasenko
  • D. V. Schitz
Optical Sources and Receivers for Environmental Studies


Optical and X-radiation from a corona discharge in atmospheric-pressure air is investigated. Spectra of the optical radiation in the range 200–850 nm are obtained under various parameters of the voltage pulse. It was shown that an increase in the voltage pulse changes the corona discharge mode so that the discharge becomes a source of UV radiation, not only from nitrogen 2+ bands, but also from the cathode material. It was also shown that the formation of diffuse corona discharges in a non-uniform electric field under high pressure is conditioned by fast electrons and X-ray generation. It was determined that fast electrons originating from discharges in air under atmospheric pressure generate 525-eV photons from the K-shell of oxygen. Calculations have shown that the photons can effectively initiate new electrons near areas of strong fields. This process explains the formation of types of diffuse discharge for a positive-polarity electrode with a small radius of curvature at atmospheric pressure, and of a fast-moving cathode streamer.


Voltage Pulse Corona Discharge Runaway Electron Coaxial Line Ball Lightning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dzh. Barri, Ball Lightning and Bead Lightning (Mir, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    I. P. Stakhanov, About Physical Nature of Ball Lightning (Nauchnyi mir, Moscow, 1996) [in Russian].Google Scholar
  3. 3.
    E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    Yu. P. Raizer, Physics of Gas Discharge (“Intellect”, Dolgoprudnyi, 2009) [in Russian].Google Scholar
  5. 5.
    Yu. S. Akishev, M. E. Grushin, A. A. Deryugin, A. P. Napartovich, M. V. Pan’kin, and N. I. Trushkin, “Self-Oscillations of a Positive Corona in Nitrogen,” J. Phys., D 32(18), 2399–2409 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Bratchikov, K. A. Gagarinov, I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovenko, “About X-Radiation at Volume Discharges in Atmospheric-Pressure Air,” Tech. Phys. 77(7), 856–864 (2007).CrossRefGoogle Scholar
  7. 7.
    J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, “A Study of X-Ray Emission from Laboratory Sparks in Air at Atmospheric Pressure,” J. Geophys. Res. 113, D23207 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. V. Nguyen, A. P. J. van Deursen, and U. M. Elbert, “Multiple X-Ray Bursts from Long Discharges in Air,” J. Phys., D 41(7), 234012 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the Corona Discharge in Air,” Tech. Phys. 78(7) (2008).Google Scholar
  10. 10.
    M. Rahman, V. Cooray, N. A. Ahmad, J. Nyberg, V. A. Rakov, and S. Sharma, “X-rays from 80-cm Long Sparks in Air,” Geophys. Res. Lett. 35, L06805 (2008), doi: 10.1029/2007GL032678.CrossRefGoogle Scholar
  11. 11.
    D. Z. Pai, G. D. Stancu, D. A. Lacoste, and C. O. Laux, “Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure—the Glow Regime,” Plasma Sources Sci. Technol. 18(7), 045030 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    T. Shao, V. F. Tarasenko, C. Zhang, I. D. Kostyrya, H. Jiang, R. Xu, D. V. Rybka, and P. Yan, “Generation of Runaway Electrons and X-Rays in Repetitive Nanosecond Pulse Corona Discharge in Atmospheric Pressure Air,” Appl. Phys. Express. 4(3), 066001 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    V. F. Tarasenko, E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, “Generation of Supershort Avalanche Electron Beams and Formation of Diffuse Discharges in Different Gases at High Pressure,” Plasma Devices and Operation 16(4), 267–298 (2008).CrossRefGoogle Scholar
  14. 14.
    T. Shao, C. Zhang, Z. Niu, P. Yan, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and Y. V. Shut’ko, “Diffuse Discharge, Runaway Electron, and X-Ray in Atmospheric Pressure Air in an Inhomogeneous Electrical Field in Repetitive Pulsed Modes,” Appl. Phys. Lett. 98(3), 021503 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Tarasenko, “Parameters of a Supershort Avalanche Electron Beam Generated in Atmospheric-Pressure Air,” Plasma Phys. Rep. 37(5), 409–421 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    I. D. Kostyrya and V. F. Tarasenko, “X-Ray Emission from a Low-Current Volume Discharge in Air at Atmospheric Pressure,” Tech. Phys. Lett. 33(5), 424–427 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    Landau, L.D. and Lifshits, E.M., Mechanics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  18. 18.
    H. Kolbenstvedt, “Simple Theory for K-Ionization by Relativistic Electrons,” J. Appl. Phys. 38(12), 4785–4787 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    Physical Magnitudes, Ed. by I.S. Grigor’eva and E.Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  20. 20.
    E. D. Lozannskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975) [in Russian].Google Scholar
  21. 21.
    E. E. Kunhardt and W. W. Byszewski, “Development of Overvoltage Breakdown at High Gas Pressure,” Phys. Rev., A 21(6), 2069–2077 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Kozyrev
    • 1
  • V. Yu. Kozhevnikov
    • 1
  • I. D. Kostyrya
    • 1
  • D. V. Rybka
    • 1
  • V. F. Tarasenko
    • 1
  • D. V. Schitz
    • 1
  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations