Traces of eruption of Eyjafjallajökull volcano according to data of lidar observations in Tomsk and Surgut

Abstract

We present the results of lidar measurements of the vertical distribution of optical parameters of anomalous aerosol formations in the atmosphere and the polarization state of backscattered sounding radiation, obtained in Tomsk (56.48°N; 85.05°E) and Surgut (61.25°N; 73.43°E) in April–May 2010. Data from measurements using back trajectory analysis of atmospheric air-mass transport according to the NOAA HYSPLIT MODEL showed that the observed anomalous aerosol formations were due to transport of the products of the Eyjafjallajökull volcano eruption in Iceland (April 14, 2010). First traces of the volcanic eruption were recorded in the troposphere over Tomsk on April 19. The volcanic aerosol persisted in the troposphere for about 10 days in total; it penetrated into the stratosphere insignificantly and could not have noticeable long-term radiation and thermal effects.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Sanderson, “Out of the Ashes,” Nature (Gr. Brit.) 465, 544–545 (2010).

    Article  Google Scholar 

  2. 2.

    H. Bingemer, H. Klein, M. Ebert, W. Haunold, U. Bundke, T. Herrmann, K. Kandler, D. Müller-Ebert, S. Weinbruch, A. Judt, K. Ardon-Dryer, Z. Levin, and J. Curtius, “Atmospheric Ice Nuclei in the Eyjafjallajökull Volcanic Ash Plume,” Atmos. Chem. Phys. Discuss 11, 2733–2748 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    A. Ansmann, M. Tesche, S. Groβ, V. Freudenthaler, P. Seifert, A. Hiebsch, J. Schmidt, U. Wandinger, I. Mattis, D. Müller, and M. Wiegner, “The 16 April 2010 Major Volcanic Ash Plume over Central Europe: EARLINET Lidar and AERONET Photometerobservations at Leipzig and Munich, Germany,” Geophys. Rev. Lett. 37, L13810 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    S. Emeis, W. Junkermann, K. Schäfer, R. Forkel, P. Suppan, H. Flentje, S. Gilge, W. Fricke, M. Wiegner, V. Freudenthaler, S. Gro C. Munkel, and F. Obleitner, “Spatial Structure and Dispersion of the 16/17 April 2010 Volcanic Ash Cloud over Germany,” Atmos. Chem. Phys. Discuss 10, 26117–26155 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke, “The Eyjafjallajökull Eruption in April 2010-Detection of Volcanic Plume Using In-Situ Measurements, Ozone Sondes and Lidar-Ceilometerprofiles,” Atmos. Chem. Phys. 10, 10085–10092 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    U. Schumann, B. Weinzierl, O. Reitebuch, H. Schlager, A. Minikin, C. Forster, R. Baumann, T. Sailer, K. Graf, H. Mannstein, C. Voigt, S. Rahm, R. Simmet, M. Scheibe, M. Lichtenstern, P. Stock, H. Rüba, D. Schäuble, A. Tafferner, M. Rautenhaus, T. Gerz, H. Ziereis, M. Krautstrunk, C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert, S. Weinbruch, A. Stohl, J. Gasteiger, H. Olafsson, and K. Sturm, “Airborne Observations of the Eyjafjalla Volcano Ash Cloud over Europe during Air Space Closure in April and May 2010,” Atmos. Chem. Phys. Discuss 10, 22131–22218 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Modification of the Measuring Complex at the Siberian Lidar Station,” Atmos. Ocean. Opt. 17(10), 756–762 (2004).

    Google Scholar 

  8. 8.

    G. Fiocco and G. Grams, “Observation of Aerosol Layer at 20 km by Optical Radar,” J. Atmos. Sci. 21, 323–324 (1964).

    ADS  Article  Google Scholar 

  9. 9.

    V. V. Zuev, A. V. El’nikov, and V. D. Burlakov, Laser Sounding of the Middle Atmosphere, Ed. by V. V. Zuev (RASKO, Tomsk, 2002) [in Russian].

    Google Scholar 

  10. 10.

    I. V. Samokhvalov, A. P. Stykon, B. V. Kaul’, and D. I. Shelefontyuk, “Automation of Measurements of Backscattering Matrices of High-Level Clouds Using the High-Altitude Lidar of TSU,” in Proceedings of the XVI International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics” (Publishing House of Institute of Atmospheric Optics SB RAS, Tomsk, 2009), pp. 394–396 [in Russian].

    Google Scholar 

  11. 11.

    A. V. El’nikov, V. V. Zuev, and V. N. Marichev, “An Account of the Effect of the PMT Afterpulses on the Lidar Signals of Aerosol and Molecular Scattering,” Atmos. Ocean. Opt. 4(2), 328–332 (1991).

    Google Scholar 

  12. 12.

    A. Kh. Khrgian, Atmospheric Physics (Moscow State University, Moscow, 1986) [in Russian].

    Google Scholar 

  13. 13.

    L. T. Matveev, Atmospheric Physics (Gidrometoizdat, St.-Petersburg, 2000) [in Russian].

    Google Scholar 

  14. 14.

    V. V. Zuev, V. D. Burlakov, A. V. El’nikov, and A. V. Nevzorov, “Lidar Observations of Midlatitude Stratospheric Aerosol Layer during Long-Term Volcanically Quiet Period,” Atmos. Ocean. Opt. 19(7), 535–539 (2006).

    Google Scholar 

  15. 15.

    B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating Particle Orientation in Cirrus Clouds by Measuring Backscattering Phase Matrices with Lidar,” Appl. Opt. 43(36), 6620–6628 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    V. V. Zuev, Yu. S. Balin, O. A. Bukin, V. D. Burlakov, S. I. Dolgii, V. P. Kabashnikov, A. V. Nevzorov, F. P. Osipenko, A. N. Pavlov, I. E. Penner, S. V. Samoi- lova, S. Yu. Stolyarchuk, A. P. Chaikovskii, and K. A. Shmirko, “Results of Joint Observations of Aerosol Perturbations of the Stratosphere at the CIS-LiNet Network in 2008,” Atmos. Ocean. Opt. 22(3), 295–301 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. D. Burlakov.

Additional information

Original Russian Text © V.D. Burlakov, S.I. Dolgii, A.V. Nevzorov, I.V. Samokhvalov, S.V. Nasonov, I.V. Zhivotenyuk, A.V. El’nikov, E.V. Nazarov, I.I. Plusnin, A.M. Shikhantsov, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burlakov, V.D., Dolgii, S.I., Nevzorov, A.V. et al. Traces of eruption of Eyjafjallajökull volcano according to data of lidar observations in Tomsk and Surgut. Atmos Ocean Opt 25, 110–117 (2012). https://doi.org/10.1134/S1024856012020066

Download citation

Keywords

  • Lidar
  • Oceanic Optic
  • Aerosol Layer
  • Back Trajectory
  • Lidar Signal