Skip to main content
Log in

Pulse coherent lidar echo signal power fluctuations caused by atmospheric turbulence

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Power fluctuations of a coherent Doppler lidar echo signal caused by turbulent pulsations of the refractive index of air are analyzed. Based on an analytical approach, it is shown that, with an increase in the optical turbulence intensity, the relative root-mean-square deviation of the echo signal power, averaged by microphysical parameters of scattering particles, first increases and then decreases not exceeding the value of 0.5. An experimental dependence of this characteristic on the measurement distance is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Banakh, I. N. Smalikho, and Ch. Werner, “Numerical Simulation of Effect of Refractive Turbulence on the Statistics of a Coherent Lidar Return in the Atmosphere,” Appl. Opt. 39(30), 5403–5414 (2000).

    Article  ADS  Google Scholar 

  2. R. G. Frehlich, “Simulation of Laser Propagation in a Turbulent Atmosphere,” Appl. Opt. 39(3), 393–397 (2000).

    Article  ADS  Google Scholar 

  3. R. G. Frehlich, “Effect of Refractive Turbulence on Ground-Based Verification of Coherent Doppler Lidar Performance,” Appl. Opt. 39(24), 4237–4246 (2000).

    Article  ADS  Google Scholar 

  4. A. Belmonte and B. J. Rye, “Heterodyne Lidar Returns in the Turbulent Atmosphere: Performance Evaluation of Simulated Systems,” Appl. Opt. 39(15), 2401–2411 (2000).

    Article  ADS  Google Scholar 

  5. A. Belmonte, “Feasibility Study for the Simulation of Beam Propagation: Consideration of Coherent Lidar Performance,” Appl. Opt. 39(30), 5426–5445 (2000).

    Article  ADS  Google Scholar 

  6. B. Krosin’yani, P. Di Porto, and M. Bertolotti, Quantum Electronics Principles and Applications (Academic Press, New York, San Francisco, London, 1975; Nauka, Moscow, 1980).

    Google Scholar 

  7. B. J. Rye, “Refractive-Turbulence Contribution to Incoherent Backscatter Heterodyne Lidar,” J. Opt. Soc. Amer. 71(6), 687–691 (1981).

    Article  ADS  Google Scholar 

  8. V. A. Banakh and V. L. Mironov, Location Propagation of Laser Radiation in the Turbulent Atmosphere (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  9. R. G. Frehlich and M. J. Kavaya, “Coherent Laser Radar Performance for General Atmospheric Turbulence,” Appl. Opt. 30(36), 5325–5337 (1991).

    Article  ADS  Google Scholar 

  10. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in the Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Current Problems of Atmospheric Optics, Part 5: Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  12. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction in the Statistical Radiophysics, Part 2: Random Fields (Nauka, Moscow, 1978).

    Google Scholar 

  13. V. A. Banakh and I. N. Smalikho, “Determination of Optical Turbulence Intensity by Atmospheric Backscattering of Laser Radiation,” Atmos. Ocean. Opt. 24(4), 300–307 (2011).

    Google Scholar 

  14. F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar,” J. Atmos. and Ocean. Technol. 21(2), 194–206 (2004).

    Article  ADS  Google Scholar 

  15. I. N. Smalikho and Sh. Ram, “Measurements of Aircraft Wake Vortex Parameters with a Coherent Doppler Lidar,” Atmos. Ocean. Opt. 21(11), 854–868 (2008).

    Google Scholar 

  16. Yu. S. Balin, I. A. Razenkov, and A. P. Rostov, “Influence of Noise on the Statistical Properties of Lidar Signals due to Aerosol,” Atmos. Ocean. Opt. 4(4), 328–331 (1991).

    Google Scholar 

  17. D. L. Hutt, “Modeling and Measurements of Atmospheric Optical Turbulence over Land,” Opt. Eng. 38(8), 1288–1295 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Smalikho.

Additional information

Original Russian Text © I.N. Smalikho, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalikho, I.N. Pulse coherent lidar echo signal power fluctuations caused by atmospheric turbulence. Atmos Ocean Opt 25, 82–88 (2012). https://doi.org/10.1134/S1024856012010137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856012010137

Keywords

Navigation