Near IR TDLS study of HF first overtone line shape. I. Experimental results


The HF first overtone vibration-rotational absorption spectral line profile (the transition 0–2 R(0)) broadened by Ar (mixture HF: Ar = 1: 150, T = 295 K, P = 10−300 mm Hg) is studied by the method of near IR diode laser spectroscopy. A tunable distributed feedback fiber diode laser was used as a radiation source in a two-channel spectrometer (λ ∼ 1.284 μm, spectral tuning range Δν = 1.5−2.0 cm−1, the output radiation power is 15 mW, the spectral half-width of lasing lines is ∼ 5 MHz). The broadening and shifting coefficients of the considered HF line are determined, using traditional Voigt, Rautian, and Galatry spectral profiles.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. Rahn, A. Adamantiades, J. E. Kenton, J. Frank, G. Achilles, and E. John, Guide To Nuclear Power Technology (Wiley Interscience, New York, 1984).

    Google Scholar 

  2. 2.

    Sh. Sh. Nabiev and Yu. N. Ponomarev, “Spectrochemical Aspects of Remote Laser Monitoring of Emergency Emissions from Plants with Nuclear Fuel Cycle,” Atmos. Ocean. Opt. 11(12), 1093–1098 (1998).

    Google Scholar 

  3. 3.

    J. J. Katz and E. Rabinowitch, The Chemistry of Uranium, Part 1: The Element, its Binary and Related Compounds (McGraw Hill, New York; London; Toronto, 1951).

    Google Scholar 

  4. 4.

    The Chemistry of the Actinide and Transactinide Elements (5 volume set), 3rd ed., Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Berlin; Heidelberg, 2006).

    Google Scholar 

  5. 5.

    J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements (3 volume set), 2nd ed. (Chapman and Hall, 1986; Mir, Moscow, 1991).

  6. 6.

    G. Yu. Grigor’ev, S. L. Malyugin, Sh. Sh. Nabiev, A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, and M. A. Sukhanova, “Laser-Spectroscopic Techniques for Monitoring Releases from Muclear Fuel Cycle Objects,” Atom. Energy 105(4), 280–289 (2008).

    Article  Google Scholar 

  7. 7.

    J. K. Shultis and R. E. Faw, Fundamentals of Nuclear Science and Engineering, 2nd ed. (CRC Press, New York, 2007).

    Google Scholar 

  8. 8.

    N. Xu, D. R. Pirkle, J. B. Jeffries, B. McMillin, and R. K. Hanson, “Near-Infrared Diode Laser Hydrogen Fluoride Monitor for Dielectric Etch,” J. Vac. Sci. Technol., A 22(6), 2479–2486 (2004).

    ADS  Article  Google Scholar 

  9. 9.

    P. A. Martin, “Near-Infrared Diode Laser Spectroscopy in Chemical Process and Environmental Air Monitoring,” Chem. Soc. Rev. 31(4), 201–210 (2002).

    Article  Google Scholar 

  10. 10.

    A. N. Zhitov, V. Yu. Baranov, D. V. Vlasov, I. P. Suprun, E. N. Khramov, and A. I. Petrov, Remote Study of Radiation Conditions near the Chernobyl NPP (Izd-vo IPKhF RAN, Chernogolovka, 2003) [in Russian].

    Google Scholar 

  11. 11.

    G. Yu. Grigoriev, S. L. Malyugin, Sh. Sh. Nabiev, A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, M. A. Sukhanova, and Yu. P. Shapovalov, “Remote Detection of HF Molecules in Open Atmosphere with the use of Tunable Diode Lasers,” Appl. Phys., B 101(3), 683–688 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    A. I. Nadezhdinskii and A. M. Prokhorov, “Modern Trends in Diode Laser Spectroscopy,” Proc. SPIE 1724, 2–62 (1992).

    ADS  Article  Google Scholar 

  13. 13.

    A. I. Nadezhdinskii, Sh. Sh. Nabiev, G. Yu. Grigor’ev, I. E. Vyazov, S. L. Malyugin, Yu. N. Ponomarev, Ya. Ya. Ponurovskii, D. B. Stavrovskii, and D. A. Bolyasov, “Express Measurements of the Degree of Uranium Hexafluoride Enrichment and UF6 and HF Trace Quantities in Atmosphere Based on Near- and Mid-Infrared Diode Lasers,” Atmos. Ocean. Opt. 18(9), 703–711 (2005).

    Google Scholar 

  14. 14.

    G. Grigoriev, Sh. Nabiev, A. Nadezhdinskii, and Ya. Ponurovskii, “TDLS System for Remote Detection of HF in Open Atmosphere on the Base of Near-Infrared Diode Lasers,” in Abstr. of the 25th Int. Laser Radar Conf., St-Petersburg, 2010, p. 21.

  15. 15.

    G. Yu. Grigoriev, S. V. Ivanov, Sh. Sh. Nabiev, Ya. Ya. Ponurovskii, M. A. Sukhanova, “TDLS Approach to a Study of Absorption Line Profiles of HF Molecules in the Environment of Strong Intermolecular Interactions,” in Abstr. of the 7th Int. Conf. on Tunable Diode Laser Spectroscopy (TDLS-2009), Zermatt, 2009, p. 79.

  16. 16.

    S. V. Ivanov, Sh. Sh. Nabiev, Ya. Ya. Ponurovskii, and M. A. Sukhanova, “DLS Study of the HF Absorption Line Profiles,” in Abstr. of XXIV Congress on Spectroscopy (Troitsk; Moscow, 2010) [in Russian].

    Google Scholar 

  17. 17.

    K. L. Letchworth and D. C. Benner, “Rapid and Accurate Calculation of the Voigt Function,” J. Quant. Spectrosc. and Radiat. Transfer. 107(1), 173–192 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra (Elsevier, New York; London, 2008).

    Google Scholar 

  19. 19.

    S.-I. Chou, D. S. Baer, and R. K. Hanson, “Spectral Intensity and Lineshape Measurements in the First Overtone Band of HF Using Tunable Diode Lasers,” J. Mol. Spectrosc. 195(1), 123–131 (1999).

    ADS  Article  Google Scholar 

  20. 20.

    J. L. Domenech, D. Bermejo, J. Santos, J. P. Bouanich, and C. Boulet, “Lineshape Parameters of He- and Kr-Broadened HF Lines in the Fundamental Band,” J. Mol. Spectrosc. 169(1), 211–223 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    L. Galatry, “Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines,” Phys. Rev. 122(4), 1218–1223 (1961).

    ADS  MATH  Article  Google Scholar 

  22. 22.

    S. G. Rautian and I. I. Sobel’man, “The Effect of Collisions on the Doppler Broadening of Spectral Lines,” Uspekhi Fiz. Nauk 90(2), 209–236 (1966).

    Google Scholar 

  23. 23.

    R. H. Dicke, “The Effect of Collisions upon the Doppler Width of Spectral Lines,” Phys. Rev. 89, 472–473 (1953).

    ADS  Article  Google Scholar 

  24. 24.

    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Danaj, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldmanm, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimekova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, J. Quant. Spectrosc. and Radiat. Transfer 110, 533–572 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    R. Ciurylo, “Shape of Pressure and Doppler-Broadened Spectral Lines in the Core and Near Wings,” Phys. Rev., A 58(2), 1029–1039 (1998).

    ADS  Article  Google Scholar 

  26. 26.

    M. Lepère, “Line Profile Study with Tunable Diode Laser Spectrometers,” Spectrochim. Acta Part A 60(14), 3249–3258 (2004).

    ADS  Article  Google Scholar 

  27. 27.

    R. Ciurylo, A. S. Pine, and J. Szudy, “A Generalized Speed-Dependent Line Profile Combining Soft and Hard Partially Correlated Dicke-Narrowing Collisions,” J. Quant. Spectrosc. and Radiat. Transfer. 68(3), 257–271 (2001).

    ADS  Article  Google Scholar 

  28. 28.

    Sh. Sh. Nabiev, “Raman Study of Molecular Dynamics of Inorganic Fluoruoxydizers in Nonaqueous Solutions. Part 4. Xenon Tetrafluoride and Xenon Hexafluoride in Hydrogen Fluoride,” Spectrochim. Acta Part A 56(8), 1589–1611 (2000).

    ADS  Article  Google Scholar 

  29. 29.

    Sh. Sh. Nabiev and V. D. Klimov, “Infrared Spectroscopy of Fluoride Molecules in Noble Gas Solutions,” Mol. Phys. 81(2), 395–408 (1994).

    ADS  Article  Google Scholar 

  30. 30.

    S. Green and J. Hutson, “Spectral Line Shape Parameters for HF in a Bath of Ar Accurately Predicted by a Potential Inferred from the Spectra of the van der Waals Dimmer,” J. Chem. Phys. 100(2), 891–898 (1994).

    ADS  Article  Google Scholar 

  31. 31.

    J. M. Hutson, “Vibrational Dependence of the Anisotropic Intermolecular Potential of Ar-HF,” J. Chem. Phys. 96(9), 6752–6767 (1992).

    ADS  Article  Google Scholar 

  32. 32.

    M. Benedict and T. Pigford, Nuclear Chemical Engineering (McGraw-Hill, New York, 1957; Izd-vo GU po ispol’zovaniyu atomnoi energii pri Sovete ministrov SSSR, Moscow, 1960).

    Google Scholar 

  33. 33.

    Chemical Engineering of Irradiated Nuclear Fuel, Ed. by V. B. Shevchenko (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  34. 34.

    V. A. Zuev and V. T. Orekhov, Actinide Hexafluorides (Atomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  35. 35.

    M. A. Zapol’skaya, N. G. Zenkevich, and E. G. Komarova, Physical and Chemical Properties of Hydrogen Fluoride (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  36. 36.

    R. A. Lidin, V. A. Molochko, and L. L. Andreeva, Chemical Properties of Inorganic Materials, Ed. by R. A. Lidina, 5th ed. (Koloss, Moscow, 2006) [in Russian].

    Google Scholar 

  37. 37.

    N. Jacquinet-Husson, N. A. Scott, A. Chédin, L. Crépeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. De Backer-Barilly, G. Di Lonardo, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, and A. Perrin, “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. and Radiat. Transfer. 109(6), 1043–1059 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    G. A. Kuipers, “The Spectrum of Monomeric Hydrogen Fluoride: Line Shapes, Intensities, and Breadths,” J. Mol. Spectrosc. 2(1–6), 75–98 (1958).

    ADS  Article  Google Scholar 

  39. 39.

    S. A. Rice, Advances in Chemical Physics (John Wiley and Sons, New York, 2009).

    Google Scholar 

  40. 40.

    M. P. Hodges, A. J. Stone, and E. C. Lago, “Analytical Potentials for HF Dimer and Larger HF Clusters from ab initio Calculations,” J. Phys. Chem., A 102(14), 2455–2465 (1998).

    Article  Google Scholar 

  41. 41.

    N. A. Zvereva, Sh. Sh. Nabiev, A. I. Nadezhdinskii, Yu.N. Ponomarev, D. B. Stavrovskii, S. M. Chernin, T. A. Shubenkina, “IR Spectra of HF and its Complexes with Water under Atmospheric Conditions,” Atmos. Ocean. Opt. 14(12), 1009–1001 (2001).

    Google Scholar 

  42. 42.

    N. A. Zvereva, Sh. Sh. Nabiev, Yu. N. Ponomarev, and L. P. Sukhanov, “Structurally Nonrigid Molecular Complexes (HF) n(H2O)m (n + m ≥ 2) and their Spectroscopic Features,” Rus. Chem. Bull., No. 1, 45–54 (2003).

  43. 43.

    N. A. Zvereva, Sh. Sh. Nabiev, and Yu. N. Ponomarev, Structure and Properties of Molecular Complex of Water with Trace Atmospheric Gases (Publishing House of IAO SB RAS, Tomsk, 2003) [in Russian].

    Google Scholar 

  44. 44.

    V. P. Bulychev, E. I. Gromova, and K. G. Tokhadze, “Experimental and Theoretical Study of the ν(HF) Absorption Band Structure in the H2O…HF Complex,” Opt. Spectrosc. 96(5), 843–858 (2004).

    Article  Google Scholar 

  45. 45.

    A. S. Pine, “Asymmetries and Correlations in Speed-Dependent Dicke-Narrowed Line Shapes of Argon-Broadened HF,” J. Quant. Spectrosc. and Radiat. Transfer. 62(4), 397–432 (1999).

    ADS  Article  Google Scholar 

  46. 46.

    S.-I. Chou, D. S. Baer, and R. K. Hanson, “Diode-Laser Measurement of He-, Ar-, and N2-Broadened HF Lineshapes in the First Overtone Band,” J. Mol. Spectrosc. 196(1), 70–76 (1999).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sh. Sh. Nabiev.

Additional information

Original Russian Text © Sh.Sh. Nabiev, S.V. Ivanov, Ya.Ya. Ponurovskii, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nabiev, S.S., Ivanov, S.V. & Ponurovskii, Y.Y. Near IR TDLS study of HF first overtone line shape. I. Experimental results. Atmos Ocean Opt 25, 19–26 (2012).

Download citation


  • Diode Laser
  • Tunable Diode Laser
  • Hydrogen Halide
  • Uranium Hexafluoride
  • Diode Laser Spectroscopy