Optical parametric oscillator within 2.4–4.3 μm pumped with a nanosecond Nd:YAG Laser


An optical parametric oscillator has been designed on the basis of MgO:PPLN periodic structure. A compact nanosecond Nd:YAG laser has been used as a pump source at 1.053 μm. The pump pulse length is 5–7 ns at a maximum pulse energy of 300 μJ and a frequency of 1000–5000 Hz. The oscillation threshold is 22 μJ at 3 μm and 48 μJ at 4.3 μm. The maximum conversion efficiency from incident pump power to the idler output is 3.9%.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. A. Kaminskii, “Laser Crystals and Ceramics: Recent Advances,” Laser & Photon Rev. 1, 93–177 (2007).

    Article  Google Scholar 

  2. 2.

    V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The Nonlinear Coefficient d 36 of CdSiP2,” Proc. SPIE 197, 7197-21/1-8 (2009).

  3. 3.

    G. Marchev, A. Tyazhev, V. Vedenyapin, and D. Kolker, “Nd:YAG Pumped Nanosecond Optical Parametric Oscillator Based on LiInSe2 with Tunability Extending from 4.7 to 8.7 μm,” Opt. Express 17(16), 13441–13446 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, Thermal, Electrical, Damage, and Phase-Matching Properties of Lithium Selenoindate,” J. Opt. Soc. Amer. B 27(9), 1902–1927 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3,” J. Opt. Soc. Amer. B 12(11), 2102–2116 (1995).

    ADS  Article  Google Scholar 

  6. 6.

    Springer Handbook of Lasers and Optics, Ed. By Frank Trager (Springer Science+Business Media, LLC, N.Y., 2007).

    Google Scholar 

  7. 7.

    G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. B 39(8), 3597–3639 (1968).

    ADS  Google Scholar 

  8. 8.

    B. Lai, N. C. Wong, and L. K. Cheng, “Continuous-Wave Tunable Light Source at 1.6 μm by Difference-Frequency Mixing in CsTiOAsO4,” Opt. Lett. 20(17), 1779–1781 (1995).

    ADS  Article  Google Scholar 

  9. 9.

    H. Schnatz, B. Ligghardt, J. Helmke, F. Riehle, and G. Zinner, “First Phase-Coherent Frequency Measurement of Visible Radiation,” Phys. Rev. Lett. B 76(1), 18–21 (1996).

    ADS  Article  Google Scholar 

  10. 10.

    V. A. Vasil’ev, A. I. Karapuzikov, A. A. Karapuzikov, and I. V. Sherstov, RF Patent No. 90905 (October 20, 2010).

  11. 11.

    B. G. Ageev, Yu. V. Kistenev, O. Yu. Nikiforova, E. S. Nikotin, G. S. Nikotina, and V. A. Fokin, “The Use of Integral Estimation of the Object State for the Expired Air Analysis and Human Diseases Diagnosis,” Optika Atmos. Okeana 23(7), 570–579 (2010).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. B. Kolker.

Additional information

Original Russian Text © D.B. Kolker, R.V. Pustovalova, M.K. Starikova, A.I. Karapuzikov, A.A. Karapuzikov, O.M. Kuznetsov, Yu.V. Kistenev, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolker, D.B., Pustovalova, R.V., Starikova, M.K. et al. Optical parametric oscillator within 2.4–4.3 μm pumped with a nanosecond Nd:YAG Laser. Atmos Ocean Opt 25, 77–81 (2012). https://doi.org/10.1134/S1024856012010071

Download citation


  • Optical Parametric Oscillator
  • Incident Pump Power
  • Idler Wavelength
  • PPLN Crystal
  • Maximum Conversion Efficiency