Collisional broadening of CO2 lines by N2O pressure

Abstract

Carbon dioxide line broadening coefficients by N2O pressure, as well as their temperature exponents, were calculated for a wide range of rotational quantum numbers in the 0001–1000 band. A semiempiric method that is based on the semiclassical broadening theory was used. It showed good results in calculations of half-widths and shifts of lines by pressure for H2O-N2(O2), CO2-N2(O2), and O3-N2(O2) systems. The calculated collisional half-widths were compared with the measured data obtained with a frequency-stabilized tunable CO2 laser for 11 vibrational-rotational transitions with rotational quantum numbers of the lower state to 38 at room temperature and for three transitions R(10), R(22), and R(32) in the temperature interval of 300 ≤ T ≤ 700 K in the 0001–1000 band. The calculated and measured data are in a good agreement.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Margottin-Maclou, P. Dahoo, A. Henry, A. Valentin, and L. Henry, “Self-, N2-, and O2-Broadening Parameters in the ν3 and ν1 + ν3 Bands of 12C16O2,” J. Mol. Spectrosc. 131(1), 21–35 (1988).

    ADS  Article  Google Scholar 

  2. 2.

    V. Dana, A. Valentin, A. Hamdouni, and L. Rothman, “Line Intensities and Broadening Parameters of the 11101–10002 Band of 12C16O2,” Appl. Opt. 28(13), 2562–2566 (1989).

    ADS  Article  Google Scholar 

  3. 3.

    Sh. Nakamichi, Y. Kawaguchi, H. Fukuda, Sh. Enami, S. Hashimoto, M. Kawasaki, T. Umekawa, I. Morino, H. Sutoc, and G. Inoue, “Buffer-Gas Pressure Broadening for the (3 00 1)III ← (0 0 0) Band of CO2 Measured with Continuous-Wave Cavity Ring-Down Spectroscopy,” Phys. Chem. Chem. Phys. 8(2), 364–368 (2006).

    Article  Google Scholar 

  4. 4.

    Th. Meyer, Ch. Rhodes, and H. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12(5), 1993–2008 (1975).

    ADS  Article  Google Scholar 

  5. 5.

    K. I. Arshinov, M. K. Arshinov, and V. V. Nevdakh, “On the Temperature Dependence of Collisional Line-Widths of the 1000–0001 Laser Transition in the CO2 Molecule,” Quant. Electron. 40(7), 629–632 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    V. Devi, D. Benner, C. Rinslandt, and M. Smith, “Measurements of Pressure Broadening and Pressure Shifting by Nitrogen in the 4.3-μm Band of 12C16O2,” J. Quant. Spectrosc. and Radiat. Transfer 48(5–6), 581–589 (1992).

    ADS  Article  Google Scholar 

  7. 7.

    V. Devi, D. Benner, M. Smith, and C. Rinslandt, “Air- and N2-Broadening Coefficients and Pressure Shift Coefficients in the 12C16O2 Laser Bands,” J. Quant. Spectrosc. and Radiat. Transfer 59(3–5), 137–149 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    C. Corsi, F. D’Amato, M. Rosa, and G. Modugno, “High-Resolution Measurements of Line Intensity, Broadening and Shift of CO2 around 2 μm,” Eur. Phys. J. D 6(3), 327–332 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    F. Thibault, J. Boissoles, R. Doucen, J. P. Bouanich, Ph. Arcas, and C. Boulet, “Pressure Induced Shifts of CO2 Lines: Measurements in the 0003-0000 Band and Theoretical Analysis,” J. Chem. Phys. 96(7), 4945–4953 (1992).

    ADS  Article  Google Scholar 

  10. 10.

    M. S. Wooldridge, R. K. Hanson, and C. T. Bowman, “Argon Broadening of the R(48), R(50), and R(52) Lines of CO2 in the (0001)-(0000) Band,” J. Quant. Spectrosc. and Radiat. Transfer 57(3), 425–434 (1997).

    ADS  Article  Google Scholar 

  11. 11.

    A. Predoi-Cross, A. D. May, A. Vitcu, J. R. Drummond, J.-M. Hartmann, and C. Boulet, “Broadening and Line Mixing in the 2000 ← 0110, 1110 ← 0000, and 1220 ← 0110 Q Branches of Carbon Dioxide: Experimental Results and Energy Corrected Sudden Modeling,” J. Chem. Phys. 120(22), 10520–10529 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    A. Predoi-Cross, C. Luo, R. Berman, J. R. Drummond, and A. D. May, “Line Strengths, Self-Broadening, and Line-Mixing in the 2000 ← 0110 (Σ ← Π) Q-Branch of Carbon Dioxide,” J. Chem. Phys. 112(19), 8367–8377 (2000).

    ADS  Article  Google Scholar 

  13. 13.

    M. Rosa, C. Corsi, G. Modugno, and F. D’Amato, “Collisional Broadening and Shift of Lines in the 2ν1 + 2ν2 + ν3 Band of CO2,” J. Quant. Spectrosc. and Radiat. Transfer 61(1), 97–104 (1999).

    ADS  Article  Google Scholar 

  14. 14.

    M. O. Bulanin, V. P. Bulychev, and E. B. Khodos, “Calculation of Parameters of Rovibrational Lines in the 9.4- and 10.4-μm CO2 Bands at Different Temperatures,” Optika i Spektrosk. 48(4), 732–737 (1980).

    Google Scholar 

  15. 15.

    A. Bykov, N. Lavrentieva, and L. Sinitsa, “Semi-Empiric Approach to the Calculation of H2O and CO2 Line Broadening and Shifting,” Mol. Phys. 102(14–15), 1653–1658 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    N. Lavrentieva, A. Osipova, L. Sinitsa, Ch. Claveau, and A. Valentin, “Shifting Temperature Dependence of Nitrogen-Broadened Lines in the ν2 Band of H2O,” Mol. Phys. 106(5), 1261–1266 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Zh. Buldyreva, N. N. Lavrentieva, A. S. Osipova, and T. P. Mishina, “Calculation of Coefficients of Collisional Broadening of Ozone Spectral Lines Induced by Pressure of Atmospheric Gases,” Opt. Spectrosc. 108(4), 549–559 (2010).

    Article  Google Scholar 

  18. 18.

    C. J. Tsao and B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. and Radiat. Transfer. 2(1), 41–91 (1961).

    Article  Google Scholar 

  19. 19.

    N. N. Lavrentieva, T. P. Mishina, L. N. Sinitsa, and Dzh. Tennison, “Calculations of Self-Broadening and Self-Shift of Water Vapor Spectral Lines with the Use of Accurate Vibration-Rotation Wave Functions,” Atmos. Ocean. Opt. 21(12), 957–961 (2008).

    Google Scholar 

  20. 20.

    V. I. Starikov and N. N. Lavrentieva, Collisional Broadening of Spectral Absorption Lines of Atmospheric Gas Molecules (Publishng House of IAO SB RAS, Tomsk, 2006) [in Russian].

    Google Scholar 

  21. 21.

    L. S. Rothman, I. E. Gordon, A. Barbe, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckovar, M. A. H. Smith, K. Sung, S. A. Tash- kun, J. Tennyson, R. A. Toth, A. C. Vandaele, Auwera J. Vander, “The HITRAN-2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. and Radiat. Transfer 110(9–10), 533–572 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    V. V. Nevdakh, “Probabilities of Spontaneous Radiation and Collisional Widths of Transition Lines 0001-[1000, 0200]I,II,” Kvant. Elektron. 11(8), 1622–1627 (1984).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Dudaryonok.

Additional information

Original Russian Text © A.S. Dudaryonok, N.N. Lavrentieva, K.I. Arshinov, V.V. Nevdakh, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dudaryonok, A.S., Lavrentieva, N.N., Arshinov, K.I. et al. Collisional broadening of CO2 lines by N2O pressure. Atmos Ocean Opt 25, 12–18 (2012). https://doi.org/10.1134/S1024856012010034

Download citation

Keywords

  • Half Width
  • Oceanic Optic
  • Multipole Moment
  • Rotational Quantum Number
  • Line Half Width