Skip to main content

Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing

Abstract

A method is developed for retrieving the altitude profiles of optical and microphysical parameters (MPPs) of postvolcanic stratospheric aerosol (SA) from atmospheric remote sensing data at wavelengths of 355, 532 and 1064 nm. The method uses robust multiple regressions between optical SA characteristics derived from the statistical optical-microphysical SA model to retrieve the profiles of the aerosol backscattering coefficient (ABSC) at the mentioned wavelengths. The inverse problem is solved using polynomial multiple regressions between aerosol integral MPPs and spectral ABSC values. Agreement with independent experimental data confirms the reliability of the derived regressions. We present the results of numerical experiments on retrieving ABSC and aerosol MPP profiles corresponding to different states of the postvolcanic stratosphere.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric Effects of the Mount Pinatubo Eruption,” Nature 373(6513), 399–404 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    P. B. Russell, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamill, L.W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, and R. W. Bergstrom, “Global to Microscale Evolution of the Pinatubo Volcanic Aerosol, Derived from Diverse Measurements and Analyses,” J. Geophys. Res. D 101, 18745–18763 (1996).

    ADS  Article  Google Scholar 

  3. 3.

    G. M. Krekov and S. G. Zvenigorodskii, Optical Model of Middle Atmosphere (Nauka, Novosibirsk, 1990).

    Google Scholar 

  4. 4.

    D. S. Balis, V. Amiridis, C. Zerefos, A. Kazantzidis, S. Kazadzis, A. F. Bais, C. Meleti, E. Gerasopoulos, A. Papayannis, V. Matthias, H. Dier, and M. O. Andreae, “Study of the Effect of Different Type of Aerosols on UV-B Radiation from Measurements during EARLINET,” Atmos. Chem. Phys. 4, 307–321 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, A. Kazuma, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B. J. Sohn, J. G. Won, S. C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-Based Network Observation of Asian Dust Events of April 1998 in East Asia,” J. Geophys. Res. D 106, 18.346–18.359 (2001).

    Article  Google Scholar 

  6. 6.

    A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, “Lidar Network SIS-LiNet for Monitoring of Aerosol and Ozone: Methodology and Equipment,” Opt. Atmos. Okeana 18, 1066–1072 (2005).

    Google Scholar 

  7. 7.

    G. Müller, R. Artz, U. Baltensperger, G. Carmichael, E. Dlugokencky, S. Penkett, J. Stahelin, A. Webb, O. Hon, J. Klausen, B. Sturgers, L. Barrie, G. Braathen, L. Jalkanen, and S. Nickovic, “WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015,” GAW Report 172, WMO TD No. 1384 (Geneva, Switzerland).

  8. 8.

    “Assessment of Stratospheric Aerosol Properties (ASAP),” WCRP-124, WMO/TD-N. 1295, SPARC Report No. 4 (2006).

  9. 9.

    L. W. Thomason, M. C. Pitts, and D. M. Winker, “CALIPSO Observations of Stratospheric Aerosols: a Preliminary Assessment, Atmos. Chem. Phys. 7, 5283–5290 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    R. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, FL, 1992; Mir, Moscow, 1987).

    Google Scholar 

  11. 11.

    G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Signals of Optical Sounding of Atmosphere (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  12. 12.

    F. G. Fernald, “Analysis of Atmospheric Lidar Observation: Some Comments,” Appl. Opt. 23, 652–653 (1984).

    ADS  Article  Google Scholar 

  13. 13.

    J. D. Klett, “Stable Analytic Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211–220 (1981).

    ADS  Article  Google Scholar 

  14. 14.

    S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the Vertical Distribution of Troposphere Aerosol Layers Based on the Data of Multifrequency Raman Lidar Sensing. 1. Methods of Optical Parameter Retrieval,” Opt. Atmos. Okeana 22, 344–357 (2009).

    Google Scholar 

  15. 15.

    S. A. Lysenko and M. M. Kugeiko, “Method for the Determination of the Concentration of the Respirable Atmospheric Aerosol Fraction from the Data of Three Frequency Lidar Sensing,” Opt. Atmos. Okeana 23, 149–155 (2010).

    Google Scholar 

  16. 16.

    V. E. Zuev and I. E. Naats, Inverse Problems of Atmosphere Optics (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  17. 17.

    P.-H. Wang, M. P. McCormick, T. J. Swissler, M. T. Osborn, W. Y. Fuller, and G. K. Yue, “Inference of Stratospheric Aerosol Composition and Size Distribution from SAGE II Satellite Measurements,” J. Geophys. Res. D 94, 8435–8446 (1989).

    ADS  Article  Google Scholar 

  18. 18.

    J. Jumelet, S. Bekki, C. David, and P. Keckhut, “Statistical Estimation of Stratospheric Particle Size Distribution by Combining Optical Modeling and Lidar Scattering Measurements,” Atmos. Chem. Phys. 8, 5435–5448 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    B. D. Belan, V. V. El’nikov, V. V. Zuev, V. N. Marichev, and V. L. Pravdin, “Research Results of Optical and Microstructure Characteristics of Stratospheric Aerosol by Treatment Method of Lidar Measurements in Tomsk City during Summer 1991,” Opt. Atmos. Okeana 5, 593–601 (1992).

    Google Scholar 

  20. 20.

    C. Bockmann, I. Mironova, and D. Muller, “Microphysical Aerosol Parameters from Multiwavelength Lidar,” J. Opt. Soc. Am. 22, 518–528 (2005).

    MathSciNet  ADS  Article  Google Scholar 

  21. 21.

    C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, M. C. Pitts, M. N. Osborn, R. J. DeCoursey, and D. C. Woods, “Relationships between Optical Extinction, Backscatter and Aerosol Surface and Volume in the Stratosphere Following the Eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).

    ADS  Article  Google Scholar 

  22. 22.

    H. Jager and T. Deshler, “Lidar Backscatter to Extinction, Mass and Area Conversions for Stratospheric Aerosols Based on Midlatitude Balloonborne Size Distribution Measurements,” Geophys. Res. Lett. 29, 1929 (2002). doi: 10.1029/2002GL015609

    ADS  Article  Google Scholar 

  23. 23.

    G. P. Gobbi, “Parametrization of Stratospheric Aerosol Physical Properties on the Basis of Nd:YAG Lidar Observations,” Appl. Opt. 37, 4712–4720 (1998).

    ADS  Article  Google Scholar 

  24. 24.

    U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, “Determination of Stratospheric Aerosol Microphysical Properties from Independent Extinction and Backscattering Measurements with a Raman Lidar,” Appl. Opt. 34, 8315–8329 (1995).

    ADS  Article  Google Scholar 

  25. 25.

    S. A. Lysenko and M. M. Kugeiko, “Regression Approach to Analyzing the Informativity and Interpretation of Aerosol Optical Measurements,” J. Appl. Spectrosc. 76, 826 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    L. W. Thomason, L. R. Poole, and T. R. Deshler, “A Global Climatology of Stratospheric Aerosol Surface Area Density as Deduced from SAGE II: 1984–1994,” J. Geophys. Res. D 102, 8967–8976 (1997).

    ADS  Article  Google Scholar 

  27. 27.

    L. W. Thomason and T. Peter, “Assessment of Stratospheric Aerosol Properties (ASAP),” SPARC Report No. 4, WCRP-124, WMO/TDNo. 1295, http://www.atmosp.physics.utoronto.ca/SPARC/index.html (Feb. 2006).

  28. 28.

    K. F. Palmer and D. Williams, “Optical Constants of Sulfuric Acid: Application to the Clouds of Venus,” Appl. Opt. 14, 208–219 (1975).

    ADS  Google Scholar 

  29. 29.

    V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  30. 30.

    G. A. d’Almeida, P. Koepke, and E. Shettle, “Atmospheric Aerosols: Global Climatology and Radiative Characteristics,” (Deepak Publ., Hampton, USA, 1991)

    Google Scholar 

  31. 31.

    L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN Molecular Spectroscopic Database and Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Rad. Transfer. 60, 665–710 (1998).

    ADS  Article  Google Scholar 

  32. 32.

    C. Bohren and D. Huffman, Absorbtion and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  33. 33.

    M. I. Mishcenko, L. D. Travis, and A. A. Lacis, Scattering, Absorbtion, and Emission of Ligtht by Small Particles (NASA Goddard Institute for Space Studies, New York, 2004).

    Google Scholar 

  34. 34.

    V. A. Korshunov, “Retrieval of Integral Parameters of Tropospheric Aerosol from Two-Wavelength Lidar Sounding,” Izv. RAN, Fiz. Atmos. Okeana 43, 671–687 (2007).

    Google Scholar 

  35. 35.

    E. G. Philip and M. Walter, “Algorithms for the Solution of the Nonlinear Least-Squares Problem,” SIAM J. Numer. Anal. 15, 977–992 (1978).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Lysenko.

Additional information

Original Russian Text © S.A. Lysenko, M.M. Kugeiko, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lysenko, S.A., Kugeiko, M.M. Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing. Atmos Ocean Opt 24, 466 (2011). https://doi.org/10.1134/S1024856011050137

Download citation

Keywords

  • Lidar
  • Aerosol Particle
  • Oceanic Optic
  • Complex Refractive Index
  • Size Distribution Function