Skip to main content

Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data

Abstract

It is justified that publication of spectral data should be restricted with respect to expert spectral databases, and restrictions on vacuum wavenumbers used to decompose the information recourses according to the primary published data are described. It is shown that parts of the HITRAN and GEISA expert databases concerning water molecule isotopologues contain outdated data (with inaccurate vacuum wavenumbers).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    IUPAC Project N 2004-035-1-100 “A Database of Water Transitions from Experiment and Theory”, URL: http://www.iupac.org/web/ins/2004-035-1-100

  2. 2.

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Csaszar, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. Zobov, L. Daumont, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I: Energy Levels and Transition Wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. Rad. Transfer. 110, 573–596 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, Hu Shui-Ming, S. N. Mikhailenko, and B. A. Voronin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II: Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O,” J. Quant. Spectrosc. Rad. Transfer. 111, 2160–2184 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Cam-Pargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Auwera Vander, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Rad. Transfer. 110, 533–572 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    N. Jacquinet-Husson, N. A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. De Backer-Barilly, G. Di Lonardo, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Kopke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Regalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K.M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, Vl. G. Tyuterev, J. Auwera Vander, P. Varanasi, and G. Wagner, “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. Rad. Transfer. 109, 1043–1059 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    R. Lanquetin, L. H. Coudert, and C. Camy-Peyret, “High-Lying Rotational Levels of Water: An Analysis of the Energy Levels of the Five First Vibrational States,” J. Mol. Spectrosc. 206, 83–103 (2001).

    ADS  Article  Google Scholar 

  7. 7.

    H. Naus, W. Ubachs, P. F. Levelt, O. L. Polyansky, N. F. Zobov, and J. Tennyson, “Cavity-Ring-Down Spectroscopy on Water Vapor in the Range 555–604 nm,” J. Mol. Spectrosc. 205, 117–121 (2001).

    ADS  Article  Google Scholar 

  8. 8.

    R. Schermaul, R. C. M. Learner, D. A. Newnham, R. G. Williams, J. Ballard, N. F. Zobov, D. Belmiloud, and J. Tennyson, “The Water Vapor Spectrum in the Region 8600–15000 cm−1: Experimental and Theoretical Studies to a New Spectral Line Database,” J. Mol. Spectrosc. 208, 32–42 (2001).

    ADS  Article  Google Scholar 

  9. 9.

    L. R. Brown, R. A. Toth, and M. Dulick, “Empirical Line Parameters of H2 16O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients,” J. Mol. Spectrosc. 212, 57–82 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    K. Tereszchuk, P. F. Bernath, N. F. Zobov, S. V. Shirin, O. L. Polyansky, N. I. Libeskind, J. Tennyson, and L. Wallace, “Laboratory Spectroscopy of Hot Water near 2-μm and Sunspot Spectroscopy in the H-Band Region,” Astrophys. J. 577, 496–500 (2002).

    ADS  Article  Google Scholar 

  11. 11.

    P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, “New Water Vapor Line Parameters in the 26000–13000 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer. 74, 493–510 (2002).

    Article  Google Scholar 

  12. 12.

    M.-F. Mérienne, A. Jenouvrier, C. Hermans, A. C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water Vapor Line Parameters in the 13000–9250 cm−1 Region, J. Quant. Spectrosc. Rad. Transfer. 82, 99–117 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    L. H. Coudert, O. Pirali, M. Vervloet, R. Lanquetin, and C. Camy-Peyret, “The Eight First Vibrational States of the Water Molecule: Measurements and Analysis,” J. Mol. Spectrosc. 228, 471–498 (2004).

    ADS  Article  Google Scholar 

  14. 14.

    P. Dupre, T. Germain, N. F. Zobov, R. N. Tolchenov, and J. Tennyson, “Continuous-Wave Cavity Ring Down near Ultraviolet Rotation-Vibration Spectrum of Water,” J. Chem. Phys. 123, 154307 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    S. Kassi, P. Macko, O. Naumenko, and A. Campargue, “The Absorption Spectrum of Water near 750 nm by CW-CRDS: Contribution to the Search of Water Dimer Absorption,” Phys. Chem. Chem. Phys. 7, 2460–2467 (2005).

    Article  Google Scholar 

  16. 16.

    R. A. Toth, “Measurements of Positions, Strengths and Self-Broadened Widths of H2O from 2900 to 8000 cm−1: Line Strength Analysis of the 2-nd Triad Bands,” J. Quant. Spectrosc. Rad. Transfer. 94, 51–107 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    P.-F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K Laboratory Emission Spectrum of Water, J. Chem. Phys. 122, 074307 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    F. Mazzotti, O. V. Naumenko, S. Kassi, A. D. Bykov, and A. Campargue, “ICLAS of Weak Transitions of Water between 11300 and 12850 cm−1. Comparison with FTS Databases,” J. Mol. Spectrosc. 239, 174–181 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    O. Naumenko, M. Sneep, M. Tanaka, S. V. Shirin, W. Ubachs, and J. Tennyson, “Cavity Ring-Down Spectroscopy of H2 17O in the Range 16570–17125 cm−1,” J. Mol. Spectrosc. 237, 63–69 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    F. Matsushima, N. Tomatsu, T. Nagai, Y. Moriwaki, and K. Takagi, “Frequency Measurement of Pure Rotational Transitions in the ν2 = 1 State of H2O, J. Mol. Spectrosc. 235, 190–195 (2006).

    ADS  Article  Google Scholar 

  21. 21.

    S. N. Mikhailenko, Wang Leb, S. Kassi, and A. Campargue, “Weak Water Absorption Lines Around 1.455 and 1.66 μm by CW-CRDS, J. Mol. Spectrosc. 244, 170–178 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    A. Campargue, S. Mikhailenko, and A. W. Liu, “ICLAS of Water in the 770 nm Transparency Window 12746–13558 cm−1. Comparison with Current Experimental and Calculated Databases,” J. Quant. Spectrosc. Rad. Transfer. 109, 2832–2845 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    T. Furtenbacher and A. G. Csaszar, “On Employing H2 16O, H2 17O, H2 18O, D2 16O Lines as Frequency Standards in the 15–170 cm−1 Window,” J. Quant. Spectrosc. Rad. Transfer 109, 1234–1251 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    T. Amano and F. Scappini, “Millimeter-Wave Spectrum of Rotationally Excited H2O,” Chem. Phys. Lett. 182, 93–95 (1991).

    ADS  Article  Google Scholar 

  25. 25.

    J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and Submillimeter-Wave Spectrum of Highly Excited States of Water,” Astrophys. J. 379, L41–L43 (1991).

    ADS  Article  Google Scholar 

  26. 26.

    F. Matsushima, H. Odashima, T. Iwasaki, S. Tsunekawa, and K. Takagi, “Frequency Measurement of Pure Rotational Transitions of H2O from 0.5 to 5 THz,” J. Mol. Struct. 352, 371–378 (1995).

    ADS  Article  Google Scholar 

  27. 27.

    R. Paso and V.-M. Horneman, “High-Resolution Rotational Absorption Spectra of H2 16O, HD16O, and D2 16O between 110 and 500 cm−1,” J. Opt. Soc. Am. B 12, 1813–1838 (1995).

    ADS  Article  Google Scholar 

  28. 28.

    O. L. Polyansky, J. R. Busler, B. Guo, K. Zhang, and P. F. Bernath, “The Emission Spectrum of Hot Water in the Region between 370 and 930 cm−1, J. Mol. Spectrosc. 176, 305–315 (1996).

    ADS  Article  Google Scholar 

  29. 29.

    De P. Natale, L. Lorini, M. Inguscio, I. G. Nolt, H. Park Jae, Di G. Lonardo, L. Fusina, A. R. Ade Peter, and A. G. Murray, “Accurate Frequency Measurements for H2O and 16O3 in the 119-cm−1 OH Atmospheric Window,” Appl. Opt. 36, 8526–8532 (1997).

    ADS  Article  Google Scholar 

  30. 30.

    P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, Vl. G. Tyuterev, and A. Campargue, “High Sensitivity Cw-Cavity Ring down Spectroscopy of Water in the Region of the 1.5 μm Atmospheric Window,” J. Mol. Spectrosc. 227, 90–108 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    C. H. Townes and F. R. Merritt, “Water Spectrum near One-Centimeter Wave-Length,” Phys. Rev. 70, 558–559 (1946).

    ADS  Article  Google Scholar 

  32. 32.

    . W. P. Strandberg, T. Wentink Jr., R. E. Hillger, G. H. Wannier, and M. L. Deutsch, “Stark Spectrum of HDO,” Phys. Rev. 73, 188 (1948).

    ADS  Article  Google Scholar 

  33. 33.

    M. W. P. Strandberg, “Rotational Absorption Spectrum of HDO,” J. Chem. Phys. 17, 901–904 (1949).

    ADS  Article  Google Scholar 

  34. 34.

    C. K. Jen, “Rotational Magnetic Moments for H2O and HDO,” Phys. Rev. 75, 471 (1949).

    Google Scholar 

  35. 35.

    C. K. Jen, D. R. Bianco, and J. T. Massey, “Some Heavy Water Rotational Absorption Lines,” J. Chem. Phys. 21, 520–525 (1953).

    ADS  Article  Google Scholar 

  36. 36.

    Y. Beers and S. Weisbaum, “An Ultra-High-Frequency Rotational Line of HDO,” Phys. Rev. 91, 1014 (1953).

    ADS  Article  Google Scholar 

  37. 37.

    B. F. Burke and M. W. P. Strandberg, “Zeeman Effect in Rotational Spectra of Asymmetric-Rotor Molecules,” Phys. Rev. 90, 303–308 (1953).

    ADS  Article  Google Scholar 

  38. 38.

    D. W. Posener and M. W. P. Strandberg, “Microwave Spectrum of HDO,” J. Chem. Phys. 21, 1401–1402 (1953).

    ADS  Article  Google Scholar 

  39. 39.

    S. Weisbaum, Y. Beers, and G. Hermann, “Low-Frequency Rotational Spectrum of HDO,” J. Chem. Phys. 23, 1601–1605 (1955).

    ADS  Article  Google Scholar 

  40. 40.

    G. Erlandsson and J. Cox, “Millimeter-Wave Lines of Heavy Water,” J. Chem. Phys. 25, 778–779 (1956).

    ADS  Article  Google Scholar 

  41. 41.

    W. S. Benedict, N. Gailar, and E. R. Plyler, “Rotational-Vibration Spectra of Deuterated Water Vapor,” J. Chem. Phys. 24, 1139–1165 (1956).

    ADS  Article  Google Scholar 

  42. 42.

    D. W. Posener, Austral. J. Phys. 10, 276–285 (1957).

    ADS  Article  Google Scholar 

  43. 43.

    E. B. Treacy and Y. Beers, “Hyperfine Structure of the Rotational Spectrum of HDO,” J. Chem. Phys. 36, 1473–1480 (1962).

    ADS  Article  Google Scholar 

  44. 44.

    P. Thaddeus, L. C. Krisher, and J. H. N. Loubser, “Hyperfine Structure in the Microwave Spectrum of HDO, HDS, CH2O, and CHDO: Beam-Maser Spec-troscopy on Asymmetric-Top Molecules,” J. Chem. Phys. 40, 257–273 (1964).

    ADS  Article  Google Scholar 

  45. 45.

    H. Bluyssen, J. Verhoeven, and A. Dymanus, “Hyperfine Structure of HDO and D2O by Beam Maser Spectroscopy,” Phys. Lett. A 25, 214–215 (1967).

    ADS  Article  Google Scholar 

  46. 46.

    J. Verhoeven, H. Bluyssen, and A. Dymanus, “Hyperfine Structure of HDO and D2O by Beam Maser Spectroscopy,” Phys. Lett. A 26, 424–425 (1968).

    ADS  Article  Google Scholar 

  47. 47.

    P. E. Fraley, Rao K. Narahari, and L. H. Jones, “High Resolution Infrared Spectra of Water Vapor ν1 and ν3 Bands of H2 18O,” J. Mol. Spectrosc. 29, 312–347 (1969).

    ADS  Article  Google Scholar 

  48. 48.

    G. Steenbeckliers and J. Bellet, “Spectre de rotation de l’eau lourde,” Comp. Rend. B 270, 1039–1041 (1970).

    Google Scholar 

  49. 49.

    F. X. Powell and D. R. Johnson, “Microwave Detection of H218O,” Phys. Rev. Lett. 24, 637 (1970).

    ADS  Article  Google Scholar 

  50. 50.

    J. Bellet and G. Steenbeckliers, “Calcul des constantes rotationnelles des molecules H2O, HDO et D2O dans leurs etats fondamentaux de vibration,” Comp. Rend. B 271, 1039–1041 (1970).

    Google Scholar 

  51. 51.

    De F. C. Lucia, R. L. Cook, P. Helminger, and W. Gordy, “Millimeter and Submillimeter Wave Rotational Spectrum and Centrifugal Distortion Effects of HDO,” J. Chem. Phys. 55, 5334–5339 (1971).

    ADS  Article  Google Scholar 

  52. 52.

    W. Lafferty, J. Bellet, and G. Steenbeckliers, “Spectre Microonde des transitions de faible intensite de la molecule HDO,” Comp. Rend. B 273, 388–391 (1971).

    Google Scholar 

  53. 53.

    G. Steenbeckeliers, J. Bellet, “Spectre micro-ondes des molecules H2 16O, H2 17O, et H2 18O,” Comp. Rend. B 273, 471–474 (1971).

    Google Scholar 

  54. 54.

    J. G. Williamson, K. Rao Narahari, and L. H. Jones, “High Resolution Infrared Spectra of Water Vapor ν2 Band of H2 18O,” J. Mol. Spectrosc. 40, 372–387 (1971).

    ADS  Article  Google Scholar 

  55. 55.

    F. C. De Lucia, R. L. Cook, P. Helminger, and W. Gordy, “Millimeter and Submillimeter Wave Rota tional Spectrum and Centrifugal Distortion Effects of HDO,” J. Chem. Phys. 55, 5334–5339 (1971).

    ADS  Article  Google Scholar 

  56. 56.

    S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman, “Dipole Moment of Water from Stark Measurements of H2O, HDO, and D2O,” J. Chem. Phys. 59, 2254–2259 (1973).

    ADS  Article  Google Scholar 

  57. 57.

    C. Camy-Peyret, J. M. Flaud, G. Guelachvili, and C. Amiot, “High Resolution Fourier Transform Spectrum of Water between 2930 and 4255 cm−1,” Mol. Phys. 26, 825–855 (1973).

    ADS  Article  Google Scholar 

  58. 58.

    F. C. De Lucia and P. Helminger, “Microwave Spectrum and Ground State Energy Levels of H2 17O and and O,” J. Mol. Spectrosc. 56, 138–145 (1975).

    ADS  Article  Google Scholar 

  59. 59.

    R. A. Toth and J. S. Margolis, “Spectrum of H2 18O in the 2900 to 3400 cm−1,” J. Mol. Spectrosc. 57, 236–245 (1975).

    ADS  Article  Google Scholar 

  60. 60.

    J. W. Fleming and M. J. Gibson, “Far-Infrared Absorption Spectra of Water Vapor H2 16O and Isotopic Modifications,” J. Mol. Spectrosc. 62, 326–337 (1976).

    ADS  Article  Google Scholar 

  61. 61.

    F. Winther, “The Rotational Spectrum of Water between 650 and 50 cm−1 H2 18O and H2 17O in Natural Abundance,” J. Mol. Spectrosc. 65, 405–419 (1977).

    ADS  Article  Google Scholar 

  62. 62.

    R. A. Toth, J.-M. Flaud, and C. Camy-Peyret, “Spectrum of H2 18O and H2 17O in the 5030 to 5640 cm−1 Region,” J. Mol. Spectrosc. 67, 185–205 (1977).

    ADS  Article  Google Scholar 

  63. 63.

    R. A. Toth, J.-M. Flaud, and C. Camy-Peyret, “Spectrum of H2 18O and H2 17O in the 6974 to 7387 cm−1,” J. Mol. Spectrosc. 67, 206–218 (1977).

    ADS  Article  Google Scholar 

  64. 64.

    J. Kaupinnen, T. Karkainen, and E. Kyro, “High-Resolution Spectrum of Water Vapor between 30 and 720 cm−1,” J. Mol. Spectrosc. 71, 15–45 (1978).

    ADS  Article  Google Scholar 

  65. 65.

    J. W. C. Johns, and A. R. W. McKellar, “Stark Spectroscopy with CO Laser: Lamb Dip Spectra of H2 17O and H2 18O in the ν2 Fundamental Band,” Can. J. Phys. 56, 737–743 (1978).

    ADS  Article  Google Scholar 

  66. 66.

    J. Kauppinen and E. Kyro, “High Resolution Pure Rotational Spectrum of Water Vapor Enriched by H2 17O and H2 18O,” J. Mol. Spectrosc. 84, 405–423 (1980).

    ADS  Article  Google Scholar 

  67. 67.

    C. Camy-Peyret, J.-M. Flaud, and N. Papineau, “La Bande ν2 des Especes Isotopiques H2 17O et H2 18O,” C.R. Acad. Sci. Paris B 290, 537–540 (1980).

    Google Scholar 

  68. 68.

    R. H. Partridge, “Far-Infrared Absorption Spectra of H2 16O, H2 17O, and H2 18O,” J. Mol. Spectrosc. 87, 429–437 (1981).

    ADS  Article  Google Scholar 

  69. 69.

    E. Kyro, “Centrifugal Distortion Analysis of Pure Rotational Spectra of H2 16O, H2 17O, and H2 18O, J. Mol. Spectrosc. 88, 167–184 (1981).

    ADS  Article  Google Scholar 

  70. 70.

    N. Papineau, C. Camy-Peyret, J.-M. Flaud, and G. Guelachvili, “The 2ν2 and ν1 Bands of HD16O,” J. Mol. Spectrosc. 92, 451–468 (1982).

    ADS  Article  Google Scholar 

  71. 71.

    R. A. Toth, V. D. Gupta, and J. W. Brault, “Line Positions and Strengths of HDO in the 2400–3300 cm−1 Region,” Appl. Opt. 21, 3337–3347 (1982).

    ADS  Article  Google Scholar 

  72. 72.

    G. Guelachvili, “Experimental Doppler-Limited Spectra of the ν2 Bands of H2 16O, H2 17O, H2 18O and HDO by Fourier-Transform Spectroscopy: Secondary Wave-Number Standards between 1066 and 2296 cm−1,” J. Opt. Soc. Am. A 73, 137–150 (1983).

    ADS  Article  Google Scholar 

  73. 73.

    R. A. Toth and J. W. Brault, “Line Positions and Strengths in the 001, 110, and 030 Bands of HDO,” Appl. Opt. 22, 908–926 (1983).

    ADS  Article  Google Scholar 

  74. 74.

    J. K. Messer, F. C. De Lucia, and P. Helminger, “Submillimeter Spectroscopy of the Major Isotopes of Water,” J. Mol. Spectrosc. 105, 139–155 (1984).

    ADS  Article  Google Scholar 

  75. 75.

    J. W. C. Johns, “High-Resolution Far-Infrared 20–350-cm−1 Spectra of Several Isotopic Species of H2O, J. Opt. Soc. Am. B 2, 1340–1354 (1985).

    ADS  Article  Google Scholar 

  76. 76.

    A. S. Pine, S. J. Coulombe, C. Camy-Peyret, and J.-M. Flaud, “Atlas of High Temperature Water Spectrum in the 3000 to 4000 cm−1 Region,” J. Phys. Chem. Ref. Data 12, 413–465 (1983).

    ADS  Article  Google Scholar 

  77. 77.

    J.-M. Flaud, C. Camy-Peyret, A. Mahmoudi, and G. Guelachvili, “The ν2 Band of HD#16O,” Int. J. Infrared Millimeter Waves 7, 1063–1090 (1986).

    ADS  Article  Google Scholar 

  78. 78.

    J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “The 2ν2 + ν3 − ν2 Hot Band of H2 18O between 4800 and 6000 cm−1: Line Positions and Intensities,” J. Quant. Spectrosc. and Radiat. Transfer. 36, 395–399 (1986).

    ADS  Article  Google Scholar 

  79. 79.

    J.-P. Chevillard, J.-Y. Mandin, C. Camy-Peyret, and J.-M. Flaud, “The First Hexad 040, 120, 021, 200, 101, 002 of H2 18O Experimental Levels and Line Intensities,” Can. J. Phys. 64, 746–761 (1986).

    ADS  Article  Google Scholar 

  80. 80.

    S. Taskun and T. Putilova, “Rotational Structure of the 000, 010, 001, 020, and 100 Vibrational States of H2 18O; Spectroscopic Assignment up to J, Ka = 30 and Critical Analysis of the Published Experimental Energy Levels and Line List,” Atmos. Ocean Opt. 22, 499–505 (2009).

    Article  Google Scholar 

  81. 81.

    G. Guelachvili and K. Rao Narahari, Handbook of Infrared Standards, with Spectral Maps and Transition Assignments between 3 and 2600 μm (Academic Press, Orlando, FL, 1986).

    Google Scholar 

  82. 82.

    S. P. Belov, I. N. Kozin, O. L. Polyansky, M. Yu. Tretyakov, and N. F. Zobov, “Measurement and Analysis of Precise Data on Rotational and Ro-Vibrational Spectra of Water. Ground and 010 State of H2 18O,” Opt. Spectrosc. 62, 1244–1248 (1987).

    Google Scholar 

  83. 83.

    O. N. Ulenikov, A. S. Zhilyakov, and G. A. Shevchenko, “The Line Intensities of the 2ν2 + ν3 − ν2 Hot Band of H2 18O,” J. Mol. Spectrosc. 133, 224–226 (1989) (1989).

    ADS  Article  Google Scholar 

  84. 84.

    T. Ohshima and H. Sasada, “1.5-μm DFB Semiconductor Laser Spectroscopy of Deuterated Water,” J. Mol. Spectrosc. 136, 250–263 (1989).

    ADS  Article  Google Scholar 

  85. 85.

    H. Sasada, S. Takeuchi, M. Iritani, and K. Nakatani, “Semiconductor-Laser Heterodyne Frequency Measurements on 1.52-νm Molecular Transitions,” J. Opt. Soc. Am. B 8, 713–717 (1992).

    ADS  Article  Google Scholar 

  86. 86.

    C. P. Rinsland, M. A. H. Smith, V. M. Devi, and D. C. Benner, “Measurements of Lorentz-Broadening Coefficients and Pressure-Induced Line Shift Coefficients in the ν2 Band of HD16O,” J. Mol. Spectrosc. 150, 640–646 (1991).

    ADS  Article  Google Scholar 

  87. 87.

    A. Jenouvrier, M. F. Merienne, M. Carleer, R. Colin, A.-C. Vandaele, P. F. Bernath, O. L. Polyansky, and J. Tennyson, “The Visible and near Ultraviolet Rotation-Vibration Spectrum of HOD,” J. Mol. Spectrosc. 209, 165–168 (2001).

    ADS  Article  Google Scholar 

  88. 88.

    R. A. Toth, “Transition Frequencies and Absolute Strengths of H2 17O and H2 18O in the 6.2-μm Region,” J. Opt. Soc. Am. B 9, 462–482 (1992).

    ADS  Article  Google Scholar 

  89. 89.

    T. M. Goyette, F. C. DeLucia, J. M. Dutta, and C. R. Jones, “Variable Temperature Pressure Broadening of the 41,4-32,1 Transition of H2O by O2 and N2,” J. Quant. Spectrosc. Rad. Transfer 49, 485–489 (1993).

    ADS  Article  Google Scholar 

  90. 90.

    R. A. Toth, “HD16O, HD18O, and HD17O Transition Frequencies and Strengths in the ν2 Bands, J. Mol. Spectrosc. 162, 20–40 (1993).

    ADS  Article  Google Scholar 

  91. 91.

    R. A. Toth, “Measurements of HDO between 4719 and 5843 cm−1,” J. Mol. Spectrosc. 186, 276–292 (1997).

    ADS  Article  Google Scholar 

  92. 92.

    R. A. Toth, “Line Positions and Strengths of HDO between 6000 and 7700 cm−1,” J. Mol. Spectrosc. 186, 66–89 (1997).

    ADS  Article  Google Scholar 

  93. 93.

    A. Bykov, O. Naumenko, T. Petrova, A. Scherbakov, L. Sinitsa, J.-Y. Mandin, C. Camy-Peyret, and J.-M. Flaud, “The Second Decade of H2 18O: Line Positions and Energy Levels,” J. Mol. Spectrosc. 172, 243–254 (1995).

    ADS  Article  Google Scholar 

  94. 94.

    A. Bykov, V. Kapitanov, O. Naumenko, T. Petrova, V. Serdukov, and L. Sinitsa, “The Laser Spectroscopy of Highly Exited Vibrational States of HD16O,” J. Mol. Spectrosc. 153, 197–207 (1992).

    ADS  Article  Google Scholar 

  95. 95.

    A. Bykov, O. Naumenko, O. Zotov, and V. Makarov, “ν2 + ν3 Band of HD16O,” in Proceedings of the 10th All-Union Symposium and School on High-Resolution Molecular Spectroscopy, Proc. SPIE 1811, 191–193 (1992).

    ADS  Google Scholar 

  96. 96.

    O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, and D. J. Nesbitt, “High Resolution Vibrational Overtone Studies of HOD and H2O with Single Mode, Injection Seeded Ring Optical Parametric Oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).

    ADS  Article  Google Scholar 

  97. 97.

    J. R. Fair, O. Votava, and D. J. Nesbitt, “OH Stretch Overtone Spectroscopy and Transition Dipole Alignment of HOD,” J. Chem. Phys. 108, 72–80 (1998).

    ADS  Article  Google Scholar 

  98. 98.

    V. V. Lazarev, T. M. Petrova, L. N. Sinitsa, Qing-Shi Zhu, Jia-Xiang Han, and Lu-Yuan Hao, “Absorption Spectrum of HD16O in 0.7 μm Region,” Atmos. Ocean. Opt. 11, 809–812 (1998).

    Google Scholar 

  99. 99.

    R. A. Toth, “HDO and D2O Low Pressure, Long Path Spectra in the 600–3100 cm−1 Region. I. HDO Line Positions and Strengths,” J. Mol. Spectrosc. 195, 73–97 (1999).

    ADS  Article  Google Scholar 

  100. 100.

    C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa, and B. Voronin, “Fourier-Transform Absorption Spectrum of the H2 17O Molecule in the 9711–11335 cm−1,” J. Quant. Spectrosc. Rad. Transfer 61, 795–812 (1999).

    ADS  Article  Google Scholar 

  101. 101.

    F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi, “Frequency Measurement of Pure Rotational Transitions of H2 17O and H2 18O from 0.5 to 5 THz,” J. Mol. Spectrosc. 193, 217–223 (1999).

    ADS  Article  Google Scholar 

  102. 102.

    O. Naumenko, E. Bertseva, and A. Campargue, “The 4VOH Absorption Spectrum of HDO,” J. Mol. Spectrosc. 197, 122–132 (1999).

    ADS  Article  Google Scholar 

  103. 103.

    O. Naumenko and A. Campargue, “High-Order Resonance Interactions in HDO: Analysis of the Absorption Spectrum in the 14980–15350 cm−1 Spectral Region,” J. Mol. Spectrosc. 199, 59–70 (2000).

    ADS  Article  Google Scholar 

  104. 104.

    A. Campargue, E. Bertseva, and O. Naumenko, “The Absorption Spectrum of HDO in the 16300–16670 and 18000–18350 cm−1 Spectral Regions,” J. Mol. Spectrosc. 204, 94–105 (2000).

    ADS  Article  Google Scholar 

  105. 105.

    O. Naumenko, E. Bertseva, A. Campargue, and D. W. Schwenke, “Experimental and ab initio Studies of the HDO Absorption Spectrum in the 13165–13500 cm−1 Spectral Region,” J. Mol. Spectrosc. 201, 297–309 (2000).

    ADS  Article  Google Scholar 

  106. 106.

    O. Naumenko and A. Campargue, “High-Order Resonance Interactions in HDO: Analysis of the Absorption Spectrum in the 14980–15350 cm−1 Spectral Region,” J. Mol. Spectrosc. 199, 59–72 (2000).

    ADS  Article  Google Scholar 

  107. 107.

    E. Bertseva, O. Naumenko, and A. Campargue, “The 5VOH Overtone Transition of HDand and O,” J. Mol. Spectrosc. 203, 28–36 (2000).

    ADS  Article  Google Scholar 

  108. 108.

    K. J. Siemsen, J. E. Bernard, A. A. Madej, and L. Marmet, “Absolute Frequency Measurement of an HDO Absorption Line near 1480 cm−1,” J. Mol. Spectrosc. 199, 144–145 (2000).

    ADS  Article  Google Scholar 

  109. 109.

    Wang Xianghuai, He Shenggui, Hu Shuiming, Zheng Jingjing, and Zhu Qingshi, “Analysis of the HDO Absorption Spectrum between 9600-10200 cm−1,” Chin. Phys. 9, 885–891 (2000).

    Article  Google Scholar 

  110. 110.

    L. Moretti, A. Sasso, L. Gianfrani, and R. Ciurylo, “Collisional-Broadened and Dicke-Narrowed Lineshapes of H2 16O and H2 18O Transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).

    ADS  Article  Google Scholar 

  111. 111.

    T. Parekunnel, P. F. Bernath, N. F. Zobov, S. V. Shirin, O. L. Polyansky, and J. Tennyson, “Emission Spectrum of Hot HDO in the 380–2190 cm−1 Region,” J. Mol. Spectrosc. 210, 28–40 (2001).

    ADS  Article  Google Scholar 

  112. 112.

    S. N. Mikhailenko, Vl. G. Tyuterev, V. I. Starikov, K. K. Albert, B. P. Winnewisser, M. Winnewisser, G. Mellau, Camy-C. Peyret, R. Lanquetin, J.-M. Flaud, and J. W. Brault, “Water Spectra in the Region 4200–6250 cm−1, Extended Analysis of ν1 + ν2, ν2 + ν3, and 3ν2 Bands and Confirmation of Highly Excited States from Flame Spectra and from Atmospheric Long-Path Observations,” J. Mol. Spectrosc. 213, 91–121 (2002).

    ADS  Article  Google Scholar 

  113. 113.

    M. Tanaka, J. W. Brault, and J. Tennyson, “Absorption Spectrum of H2 18O in the 12400–14520 cm−1 Range,” J. Mol. Spectrosc. 216, 77–80 (2002).

    ADS  Article  Google Scholar 

  114. 114.

    S. N. Mikhailenko, Vl. G. Tyuterev, and G. Mellau, “0 0 0 and 0 1 0 States of H2 18O: Analysis of Rotational Transitions in Hot Emission Spectrum in the 400–850 cm−1 Region,” J. Mol. Spectrosc. 217, 195–211 (2003).

    ADS  Article  Google Scholar 

  115. 115.

    A. Janca, K. Tereszchuk, P. F. Bernath, N. F. Zobov, S. V. Shirin, O. L. Polynsky, and J. Tennyson, “Emission Spectrum of Hot HDO Below 4000 cm−1,” J. Mol. Spectrosc. 219, 132–135 (2003).

    ADS  Article  Google Scholar 

  116. 116.

    E. Bertseva, O. Naumenko, and A. Campargue, “The Absorption Spectrum of HDO around 1.0 μm by ICLAS-VECSEL,” J. Mol. Spectrosc. 221, 38–46 (2003).

    ADS  Article  Google Scholar 

  117. 117.

    O. V. Naumenko, S. Voronina, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of HDO in the 7500–8200 cm−1 Region: Revisited,” J. Mol. Spectrosc. 227, 151–157 (2004).

    ADS  Article  Google Scholar 

  118. 118.

    O. Naumenko, S.-M. Hu, S.-G. He, and A. Campargue, “Rovibrational Analysis of the Absorption Spectrum of HDO between 10110 and 12215 cm−1,” Phys. Chem. Chem. Phys. 6, 910–918 (2004).

    Article  Google Scholar 

  119. 119.

    R. N. Tolchenov and J. Tennyson, “Water Line Parameters for Weak Lines in the Range 7400–9600 cm−1,” J. Mol. Spectrosc. 231, 23–27 (2005).

    ADS  Article  Google Scholar 

  120. 120.

    A. Campargue, I. Vasilenko, and O. Naumenko, “Intracavity Laser Absorption Spectroscopy of HDO between 11645 and 12330 cm−1,” J. Mol. Spectrosc. 234, 216–227 (2005).

    ADS  Article  Google Scholar 

  121. 121.

    R. A. Toth, “Measurements of Positions, Strengths and Self-Broadened Widths of H2O from 2900 to 8000 cm−1: Line Strength Analysis of the 2nd Triad Bands,” J. Quant. Spectrosc. Rad. Transfer. 94, 51–107 (2005).

    ADS  Article  Google Scholar 

  122. 122.

    R. N. Tolchenov, O. Naumenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A. C. Vandaele, “Water Vapour Line Assignments in the 9250–26000 cm−1 Frequency Range,” J. Mol. Spectrosc. 233, 68–76 (2005).

    ADS  Article  Google Scholar 

  123. 123.

    M. Tanaka, O. Naumenko, J. Brault, and J. Tennyson, “Fourier Transform Absorption Spectraof H2 18O and H2 17O in the 3ν + D and 4ν Polyad Region,” J. Mol. Spectrosc. 234, 1–9 (2005).

    ADS  Article  Google Scholar 

  124. 124.

    G. Yu. Golubiatnikov, V. N. Markov, A. Guarnieri, and R. Knuchel, “Hyperfine Structure of H2 16O and H2 18O Measured by Lamb-Dip Technique in the 180–560 GHz Frequency Range,” J. Mol. Spectrosc. 240, 251–254 (2006).

    ADS  Article  Google Scholar 

  125. 125.

    An-Wen Liu, Jun-He Du, Ke-Feng Song, Le Wang, Lei Wan, and Shui-Ming Hu, “High-Resolution Fourier-Transform Spectroscopy of 18O-Enriched Water Molecule in the 1080–7800 cm−1 Region,” J. Mol. Spectrosc. 237, 149–162 (2006).

    ADS  Article  Google Scholar 

  126. 126.

    A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, “Fourier Transform Absorption Spectra of H2 17O and H2 18O in the 8000–9400 cm−1 Spectral Region,” J. Mol. Spectrosc. 237, 53–62 (2006).

    ADS  Article  Google Scholar 

  127. 127.

    A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, “Fourier-Transform Absorption Spectroscopy of H2 18O in the First Hexade Region,” J. Mol. Spectrosc. 236, 127–133 (2006).

    ADS  Article  Google Scholar 

  128. 128.

    S. N. Mikhailenko, Wang Leb, S. Kassi, and A. Campargue, “Weak Water Absorption Lines Around 1.455 and 1.66 μm by CW-CRDS,” J. Mol. Spectrosc. 244, 170–178 (2007).

    ADS  Article  Google Scholar 

  129. 129.

    A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, Vl. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer 105, 326–355 (2007).

    ADS  Article  Google Scholar 

  130. 130.

    B. A. Voronin, O. V. Naumenko, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, R. N. Tolchenov, A. C. Vandaele, and J. Tennyson, “HDO Absorption Spectrum Above 11500 cm−1: Assignment and Dynamics,” J. Mol. Spectrosc. 244, 87–101 (2007).

    ADS  Article  Google Scholar 

  131. 131.

    F. Mazzotti, R. N. Tolchenov, and A. Campargue, “High Sensitivity ICLAS of H2 18O in the Region of the Second Decade 11520–12810 cm−1,” J. Mol. Spectrosc. 243, 78–89 (2007).

    ADS  Article  Google Scholar 

  132. 132.

    O. V. Naumenko, B. A. Voronin, F. Mazzotti, J. Tennyson, and A. Campargue, “Intracavity Laser Absorption Spectroscopy of HDO between 12145 and 13160 cm−1,” J. Mol. Spectrosc. 248, 122–133 (2008).

    ADS  Article  Google Scholar 

  133. 133.

    D. Lisak and J. T. Hodges, “Low-Uncertainty H2O Line Intensities for the 930-nm Region,” J. Mol. Spectrosc. 249, 6–13 (2008).

    ADS  Article  Google Scholar 

  134. 134.

    A. S. Pine, S. J. Coulombe, C. Camy-Peyret, and J.-M. Flaud, “Atlas of High Temperature Water Spectrum in the 3000 to 4000 cm−1 Region,” J. Phys. Chem. Ref. Data 12, 413–465 (1983).

    ADS  Article  Google Scholar 

  135. 135.

    F. C. De Lucia, P. Helminger, R. C. Cook, and W. Gordy, “Submillimeter Microwave Spectrum of H2 18O,” Phys. Rev. A 6, 1324–1326 (1972).

    ADS  Article  Google Scholar 

  136. 136.

    R. A. Toth, “Water Vapor Measurements between 590 and 2582 cm−1. Line Positions and Strengths,” J. Mol. Spectrosc. 190, 379–396 (1998).

    ADS  Article  Google Scholar 

  137. 137.

    B. A. Voronin, J. Tennyson, R. N. Tolchenov, A. A. Lugovskoy, and S. N. Yurchenko, “A High Accuracy Computed Line List for the HDO Molecule,” Mon. Not. R. Astron. Soc. 402, 492–496 (2010).

    ADS  Article  Google Scholar 

  138. 138.

    D. W. Schwenke and H. Partridge, “Convergence Testing of the Analytic Representation of an ab initio Dipole Moment Function for Water: Improved Fitting Yields Improved Intensities,” J. Chem. Phys. 113, 6592–6597 (2000).

    ADS  Article  Google Scholar 

  139. 139.

    N. F. Zobov, R. I. Ovsyannikov, S. V. Shirin, and O. L. Polyansky, “The Assignment of Quantum Numbers in the Theoretical Spectra of the H2 16O, H2 17O and H2 18O Molecules Calculated by Variational Methods in the Region 0–26000 cm−1,” Opt. Spectrosc. 102, 348–353 (2007).

    ADS  Article  Google Scholar 

  140. 140.

    D. W. Schwenke, H. Partridge, and S. A. Tashkun, “Schwenke-Partridge Linelists PS-2007-296 for H2 18O,” http://spectra.iao.ru

  141. 141.

    D. W. Schwenke, H. Partridge, and S. A. Tashkun, “Schwenke-Partridge Linelists PS-2007-1000 for H2 18O,” http://spectra.iao.ru1

  142. 142.

    S. V. Shirin, N. F. Zobov, R. I. Ovsyannikov, O. L. Polyansky, and J. Tennyson, “Water Line Lists Close to Experimental Accuracy Using a Spectroscopically Determined Potential Energy Surface for H2 16O, H2 17O, and H2 18O,” J. Chem. Phys. 128, 224306 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Lavrentiev.

Additional information

Original Russian Text © N.A. Lavrentiev, M.M. Makogon, A.Z. Fazliev, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavrentiev, N.A., Makogon, M.M. & Fazliev, A.Z. Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data. Atmos Ocean Opt 24, 436 (2011). https://doi.org/10.1134/S1024856011050113

Download citation

Keywords

  • Oceanic Optic
  • Line Position
  • Spectral Dataset
  • Outdated Data
  • Intracavity Laser Spectroscopy