Skip to main content

Effect of relative air humidity on photoacoustic aerosol absorption measurements in the near-ground atmospheric layer

Abstract

The paper discusses wintertime synchronous near-ground measurements of the aerosol absorption coefficient at wavelengths of 532 and 1064 nm and the black carbon mass concentration by pulsed photoacoustic (PA) spectroscopy and optical aethalometry, respectively. It was found that the signal of the pulsed PA spectrometer decreases monotonically, by 30–40% on average, as the relative air humidity increases from 30 to 90%. Analysis of the data has shown that the PA method is efficient for studying the absorption of laser radiation in the range of low humidity values, i.e., for measurements of the aerosol absorption coefficient of “dry” carbonaceous particles. Correctness of the aerosol absorption measurements for increased relative air humidity (60–90%) can be improved through a sensitivity correction (additional calibration) of PA spectrometers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. F. Mikhailov, S. S. Vlasenko, A. A. Kiselev, and G. I. Ryshkevich, “Restructuring Factors of Soot Particles,” Izv. RAN. Fiz. Atmos. Okeana 34, 345–356 (1998).

    Google Scholar 

  2. 2.

    I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The Optical Properties and Morphology of Cloud-Processed Carbonaceous Smoke,” Aerosol Sci. 21, 527–538 (1990).

    Article  Google Scholar 

  3. 3.

    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active Spectral Nephelometry as a Method for the Study of Submicron Atmospheric Aerosols,” Opt. Atmos. Okeana 17, 428–436 (2004).

    Google Scholar 

  4. 4.

    G. V. Rozenberg, “On the Nature of Aerosol Absorption in the Short-Wave Region of the Spectrum,” Izv. AN SSSR, Fiz. Atmos. Okeana 15, 1280–1292 (1979).

    ADS  Google Scholar 

  5. 5.

    H. Moosmuller, W. P. Arnott, C. F. Rodgers, J. C. Chow, C.A. Frazier, L. E. Sherman, and D. L. Dietrich, “Photoacoustic and Filter Measurements Related to Aerosol Light Absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997),” J. Geophys. Res. D 103, 28149–28157 (1998).

    ADS  Article  Google Scholar 

  6. 6.

    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Features of Temporal Variability of Microfine Aerosol and Carbon-Black Content in Ground Layer of Atmosphere,” in Proceedings of the 7th International Symposium on Optics of Atmosphere and Ocean (Tomsk, 2000), P. 125.

  7. 7.

    A. M. Dillner, C. Stein, S. M. Larson, and R. Hitzenberger, “Measuring of Mass Extinction Efficiency of Elemental Carbon in Rural Aerosol,” Aerosol Sci. Technol. 35, 1009–1021 (2001).

    Article  Google Scholar 

  8. 8.

    H. Horvath, “Atmospheric Light Absorption: A Review,” Atmos. Environ. A 27, 293–317 (1993).

    Article  Google Scholar 

  9. 9.

    B. A. Bodhaine, “Aerosol Absorption Measurements at Barrow, Mauna Loa and South Pole,” J. Geophys. Res. D 100, 8967–8975 (1995).

    ADS  Article  Google Scholar 

  10. 10.

    W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and Filter-Based Ambient Aerosol Light Absorption Measurements: Instrument Comparisons and the Role of Relative Humidity,” J. Geophys. Res. D 108, 4034 (2003). doi: 10.1029/2002JD002165.

    ADS  Article  Google Scholar 

  11. 11.

    W. P. Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, “Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description,” Atmos. Environ. 33, 2845–2852 (1999).

    Article  Google Scholar 

  12. 12.

    L. Krämer, Z. Bozoki, and R. Niessner, “Characterisation of a Mobile Photoacoustic Sensor for Atmospheric Black Carbon Monitoring,” Analyt. Sci. 17(Spec. Iss.), 563–566 (2001).

    Google Scholar 

  13. 13.

    D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol Absorption Measurement Using Photoacoustic Spectroscopy: Sensitivity, Calibration, and Uncertainty Developments,” Aerosol. Sci. Technol. 40, 697–708 (2006).

    Article  Google Scholar 

  14. 14.

    A. B. Tikhomirov, K. M. Firsov, V. S. Kozlov, M. V. Panchenko, Y. N. Ponomarev, and B. A. Tikhomirov, “Investigation of Spectral Dependence of Shortwave Radiation Absorption by Ambient Aerosol Using Time-Resolved Photoacoustic Technique,” Opt. Eng. 44, 071203-1–11 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    K. A. Lewis, W. P. Arnott, H. Moosmuller, R. K. Chakrabarty, C. M. Carrico, S. M. Kreidenweis, D. E. Day, W.C. Malm, A. Laskin, J. L. Jimenez, I. M. Ulbrich, J. A. Huffman, T. B. Onasch, A. Trimborn, L. Liu, and M. I. Mishchenko, “Reduction in Biomass Burning Aerosol Light Absorption upon Humidification: Roles of Inorganically-Induced Hygroscopicity, Particle Collapse, and Photoacoustic Heat and Mass Transfer,” Atmos. Chem. Phys. 9, 8949–8966 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    “Continuum Absorption of Atmospheric Water Vapour in Visible and near-IR Spectral Regions,” Report of RFBR Grant No. 04-05-64569-A. http://grant.rfbr.ru/forms/2005/print-all.asr?proj=375424-2005-1

  17. 17.

    E. Weitz and G. Flynn, “Laser Studies of Vibrational and Rotational Relaxation in Small Molecules,” Ann. Rev. Phys. Chem. 25, 275–315 (1974).

    ADS  Article  Google Scholar 

  18. 18.

    J. Finzi, F. E. Hovis, V. N. Panfilov, P. Hess, and C. B. Moore, “Vibrational Relaxation of Water Vapor,” J. Chem. Phys. 67, 4053–4061 (1977).

    ADS  Article  Google Scholar 

  19. 19.

    W. P. Arnott, H. Moosmuller, and I. W. Walker, “Nitrogen Dioxide and Kerosene-Flame Soot Calibration of Photoacoustic Instruments for Measurement of Light Absorption by Aerosol,” Rev. Sci. Instrum. 71, 4545–4552 (2000).

    ADS  Article  Google Scholar 

  20. 20.

    http://www.iao.ru/ru/measure/

  21. 21.

    R. W. Bergstrom, P. B. Russel, and P. J. Hignett, “Wavelength Dependence of the Absorption of Black Carbon Particles: Prediction and Results from TARFOX Experiment and Implications for Aerosol Single Scattering Albedo,” Atmos. Sci. 59, 567–577 (2002).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Kozlov.

Additional information

Original Russian Text © V.S. Kozlov, M.V. Panchenko, A.B. Tikhomirov, B.A. Tikhomirov, V.P. Shmargunov, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozlov, V.S., Panchenko, M.V., Tikhomirov, A.B. et al. Effect of relative air humidity on photoacoustic aerosol absorption measurements in the near-ground atmospheric layer. Atmos Ocean Opt 24, 487 (2011). https://doi.org/10.1134/S1024856011050101

Download citation

Keywords

  • Black Carbon
  • Atmospheric Aerosol
  • Aerosol Absorption
  • Aerosol Filter
  • Water Vapor Molecule