Skip to main content
Log in

Far-field temporal dynamics of a laser beam passed through a thin nanocolloidal layer

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We report on the experimental results of the temporal dynamics and formation of far-field diffraction patterns obtained when a low-intensity laser beam passes through a thin cell with metallic nanocolloids. The steady state structure of the intensity distribution on a distant screen is shown to be formed in a few seconds starting from the moment of laser beam incidence on the colloid and consists of several coaxial bright and dark rings. The ring’s diameter and number are varied depending on the solvent type and optical thickness of the colloid. The diffraction patterns depend also on the particle concentration and laser power. The theoretical interpretation of the observable peculiarities of diffraction pattern dynamics is carried out based on the free-space Kirchhoff diffraction integral and the analytical solution of the heat transfer equation for a light absorbing medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Kavetskaya, T. V. Voloshina, V. A. Kapavanskii, and V. I. Krasovskii, “Optic Properties of Gold Nanoparticles,” Kondens. Sredy Mezhfazn. Granitsy 11(1), 53–57 (2009).

    Google Scholar 

  2. R. A. Ganeev, A. I. Ryasnyansky, Sh. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear Susceptibilities, Absorption Coefficients and Refractive Indices of Colloidal Metals,” J. Phys. D 34, 1602–1611 (2001).

    Article  ADS  Google Scholar 

  3. D. Pan, A. Senpan, S. D. Caruthers, T. A. Williams, M. J. Scott, P. J. Gaffney, S. A. Wickline, and J. M. Lamza, “Sensitive and Efficient Detection of Thrombus with Fibrin-Specific Manganese Nanocolloids,” Chem. Commun., No. 22, 3234–3236 (2009).

  4. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, Electrical and Mechanical Approaches to Biomolecular Detection at the Nanoscale,” Microfluid Nanofluid. 4(1–2), 33–52 (2008).

    Article  Google Scholar 

  5. D. Lapotko, “Optical Excitation and Detection of Vapor Bubbles Around Plasmonic Nanoparticles,” Opt. Express. 17, 2538–2556 (2009).

    Article  ADS  Google Scholar 

  6. M. Righini, C. Girard, and R. Quidant, “Light-Induced Manipulation with Surface Plasmons,” J. Opt. A 10, 093001 (2008).

    Article  ADS  Google Scholar 

  7. Y.-Z. Yoon and P. Cicuta, “Optical Trapping of Colloidal Particles and Cells by Focused Evanescent Fields Using Conical Lenses,” Opt. Express 18, 7076–7084 (2010).

    Article  ADS  Google Scholar 

  8. A. Ashkin, J. M. Dziedzik, and P. W. Smith, “Continuous-Wave Self-Focusing and Self-Trapping of Light in Artificial Kerr Media,” Opt. Lett. 7, 276–278 (1982).

    Article  ADS  Google Scholar 

  9. V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of Soliton-Like Light Beams in an Aqueous Suspension of Polystyrene Particles,” Opt. Spektrosk. 98, 511–514 (2005) [Opt. Spectrosc. 98, 466 (2005)].

    Article  Google Scholar 

  10. R. S. Conroy, B. T. Mayers, D. V. Vezenov, D. B. Wolfe, M. G. Prentiss, and G. M. Whitesides, “Optical Waveguiding in Suspensions of Dielectric Particles,” App. Opt. 44, 7853–7857 (2005).

    Article  ADS  Google Scholar 

  11. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum Generation in Aqueous Colloids Containing Silver Nanoparticles,” Opt. Lett. 34, 2132–2134 (2009).

    Article  ADS  Google Scholar 

  12. L. Deng, K. He, T. Zhou, and C. Li, “Formation and Evolution of Far-Field Diffraction Patterns of Divergent and Convergent Gaussian Beams Passing through Self-Focusing and Self-Defocusing Media,” J. Opt. A 7, 409–415 (2005).

    Article  ADS  Google Scholar 

  13. C. M. Nascimento, M. Alencar, S. Chavez-Cerda, M. Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental Demonstration of Novel Effects on the Far-Field Diffraction Patterns of a Gaussian Beam in a Kerr Medium,” J. Opt. A 8, 947–951 (2006).

    Article  ADS  Google Scholar 

  14. Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-Induced Nonlinear Optical Characteristics of Ethanol Solution Doped with Silver Nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).

    Article  Google Scholar 

  15. H. Ono and N. Kawatsuki, “Controllable Optical Intensity Limiting of a He-Ne Laser with Host-Guest Liquid Crystals,” Opt. Commun. 139, 60–62 (1997).

    Article  ADS  Google Scholar 

  16. J. P. Gordon, R. C. Leite, R. S. Moore, P. S. Porto, and J. R. Winnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).

    Article  ADS  Google Scholar 

  17. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-Induced Diffraction Rings from a Nematic-Liquid-Crystal Film,” Opt. Lett. 6, 411–413 (1981).

    ADS  Google Scholar 

  18. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics, the School-Book (MGU-Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  19. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, London, 2003).

    Google Scholar 

  20. M. Born and E. Wolf, The Principles of Optics (Nauka, Moscow, 1970; 6th ed., Cambridge Univ., Cambridge, 1999).

    Google Scholar 

  21. S. K. Mandal, R. K. Roy, and A. K. Pal, “Surface Plasmon Resonance in Nanocrystalline Silver Particles Embedded in SiO2 Matrix,” J. Phys. D 35, 2198–2205 (2002).

    Article  ADS  Google Scholar 

  22. Handbook of Optical Constants of Solids, Vol. II, Ed. by E. D. Palik (Elsevier Science, San Diego, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Geints, V.A. Donchenko, Al.A. Zemlyanov, N.S. Panamarev, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geints, Y.E., Donchenko, V.A., Zemlyanov, A.A. et al. Far-field temporal dynamics of a laser beam passed through a thin nanocolloidal layer. Atmos Ocean Opt 24, 338–346 (2011). https://doi.org/10.1134/S1024856011040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011040075

Keywords

Navigation