Skip to main content

Polarization two-pulse method for analysis of sensing femtosecond signals based on the ultrafast optical Kerr effect


A novel molecular polarization spectroscopy method of processing the strengthened femtosecond signals, based on the ultrafast optical Kerr effect, is proposed. The processing of the reference chloroform signal by the novel method at a room temperature is demonstrated. It is shown that due to the manipulation by individual molecular motions through the constructive or destructive interference of corresponding wave packets it is possible to determine directly from the experiment such constants of molecular dynamics as the relaxation times of the coherent vibrations (≈1.5 ps) and orientation anisotropy (≈1.2 ps).

This is a preview of subscription content, access via your institution.


  1. 1.

    V. E. Zuev and V. V. Zuev, Remote Optical Sensing of the Atmosphere (Gidrometeoizdat, St.-Petersburg, 1992) [in Russian].

    Google Scholar 

  2. 2.

    R. Ruhman, L. R. Williams, A. G. Joly, B. Kohler, and K. A. Nelson, “Nonrelaxational Inertial Motion in CS2 Liquid Observed by Time-Resolved Impulsive Stimulated Scattering,” J. Phys. Chem. 91, 2237–2240 (1987).

    Article  Google Scholar 

  3. 3.

    D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Optical Kerr Studies on the Origin of the Nonlinear Responses in Simple Liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).

    ADS  Article  Google Scholar 

  4. 4.

    R. Righin, “Ultrafast Optical Kerr Effect in Liquids and Solids,” Science 262, 1389–1390 (1993).

    ADS  Google Scholar 

  5. 5.

    Y. J. Yan and S. Mukamel, “Femtosecond Pump-Probe Spectroscopy of Polyatomic Molecules in Condensed Phases,” Phys. Rev. A 41, 6485–6504 (1990).

    ADS  Article  Google Scholar 

  6. 6.

    Y. Tanimura and S. Mukamel, “Real-Time Path-Integral Approach to Quantum Coherence and Dephasing in Nonadiabatic Transitions and Nonlinear Optical Response,” Phys. Rev. E 47, 118–136 (1993).

    ADS  Article  Google Scholar 

  7. 7.

    T. Steffen, J. T. Fourkas, and K. Duppen, “Time Resolved Four- and Six-Wave Mixing in Liquids. I. Theory,” J. Chem. Phys. 105, 7364–7383 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    V. S. Lobkov, S. A. Moiseev, V. G. Nikiforov, K. M. Salikhov, and D. M. Dunaev, “Molecular Dynamics of Benzonitrile and Dichlorbenzene Investigated by Femtosecond Optical Kerr Effect,” Laser Phys. 13, 1138–1142 (2003).

    Google Scholar 

  9. 9.

    D. McMorrow, “Separation of Nuclear and Electronic Contributions to Femtosecond Four-Wave Mixing Data,” Opt. Commun. 86, 236–244 (1991).

    ADS  Article  Google Scholar 

  10. 10.

    S. A. Moiseev and V. G. Nikiforov, “Selective Femto-second Spectroscopy of Molecules in the Multipulse Technique for Observing the Optical Kerr Effect,” Quantum Electron. 34, 1077–1082 (2004).

    ADS  Article  Google Scholar 

  11. 11.

    V. G. Nikiforov, G. M. Safiullin, A. G. Shmelev, A. V. Leont’ev, and V. S. Lobkov, “Optical Control of the Anisotropy of the Orientation of Molecules in a Liquid,” Pis’ma Zh. Eksp. Teor. Fiz. 86, 757–761 (2007) [JETP Lett. 86, 666 (2007)].

    Google Scholar 

  12. 12.

    T. F. Laurent, H. Henning, N. P. Ernsting, and S. A. Kovalenko, “The Ultrafast Optical Kerr Effect in Liquid Fluoroform: an Estimate of the Collision-Induced Contribution,” Phys. Chem. Chem. Phys. 2, 2691–2697 (2000).

    Article  Google Scholar 

  13. 13.

    V. G. Nikiforov and V. S. Lobkov, “Study of the Subpi-cosecond Rotational Molecular Dynamics in Liquids,” Kvant. Elektron. 36, 984–988 (2006) [Quant. Electron. 36, 984 (2006)].

    ADS  Article  Google Scholar 

  14. 14.

    K. A. Nelson, R. J. Dayane Miller, D. R. Lutz, and M. D. Fayer, “Optical Generation of Tunable Ultrasonic Waves,” J. Appl. Phys. 53, 1144–1149 (1982).

    ADS  Article  Google Scholar 

  15. 15.

    V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of High-Power Femtosecond Laser Radiation,” Kvant. Elektron. 39, 205–228 (2009) [Quant. Electron. 39, 205 (2009)].

    ADS  Article  Google Scholar 

  16. 16.

    A. A. Zemlyanov and A. D. Bulygin, “Effective Radius of Femtosecond Laser Emission under Its Self-Influence in a Gas Medium in Regime of Multiple Filamentation,” Opt. Atmos. Okeana 21, 1064–1069 (2008).

    Google Scholar 

  17. 17.

    A. D. Bulygin, E. E. Bykova, and A. A. Zemlyanov, “Special Features of the Fluorescence of Organic Molecules with Two-Photon Absorption in a Drop Upon Exposure to a Femtosecond Laser Pulse,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 52(8), 84–91 (2009).

    Google Scholar 

  18. 18.

    A. G. Shmelev, A. V. Leont’ev, G. M. Safiullin, and V. S. Lobkov, “Supercontinuum Generator Optimization,” Uchen. Zap. KGU 149, 141–145 (2007).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. G. Shmelev.

Additional information

Original Russian Text © A.G. Shmelev, V.G. Nikiforov, G.M. Safiullin, V.S. Lobkov, V.V. Samartsev, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shmelev, A.G., Nikiforov, V.G., Safiullin, G.M. et al. Polarization two-pulse method for analysis of sensing femtosecond signals based on the ultrafast optical Kerr effect. Atmos Ocean Opt 24, 173–180 (2011).

Download citation


  • Femtosecond Laser
  • Femtosecond Pulse
  • Vibration Response
  • Optical Kerr Effect
  • Orientation Anisotropy