Skip to main content

Monte carlo estimate of backscattering noise asymptotics parameters with allowance for polarization

Abstract

We estimate parameters of time asymptotics of the polarized radiation flow emitting from a semi-infinite layer of the scattering and absorbing substance illuminated by an external directed source. Calculations on a multiprocessor cluster demonstrate that, in this case, polarization has no effect on parameters of the asymptotics of reflected radiation determining the “backscattering noise” in optical sensing. For bounded media, parameters of the polarized and nonpolarized radiation asymptotics are different, depending on the size of the transfer region; i.e., depolarization of the radiation flow is slightly delayed relative to the passage to asymptotics.

This is a preview of subscription content, access via your institution.

References

  1. Monte-Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  2. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Moscow, 2005) [in Russian].

    Google Scholar 

  3. B. Davison, Neutron Transport Theory (Clarendon, Oxford, 1957; Atomizdat, Moscow, 1960).

    MATH  Google Scholar 

  4. E. P. Zege and I. L. Katsev, “time Asymptotic Solutions of Radiative Transfer Equation Ant Their Applications,” Preprint IF AN BSSR (Minsk, 1973).

  5. L. M. Romanova, “Limit Cases of the Free Path Distribution Function of Photons Exiting a Thick Light Diffusing Layer,” Izv. AN SSSR, Fiz. Atmos. Okeana 1, 599–606 (1965).

    Google Scholar 

  6. G. W. Kattawar and G. N. Plass, “Radiation and Polarization of Multiple Scattered Light from Haze and Clouds,” Appl. Opt. 7, 1519–1527 (1968).

    ADS  Article  Google Scholar 

  7. G. A. Mikhailov, Optimization of Weight Monte-Carlo Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  8. S. A. Ukhinov and D. I. Yurkov, “Estimations of Monte-Carlo Methods for Parametric Derivatives of Polarized Radiation,” Sib. Zh. Vychisl. Matem. 5, 40–56 (2002).

    Google Scholar 

  9. S. A. Ukhinov and D. I. Yurkov, “Computation of the Parametric Derivatives of Polarized Radiation and the Solution of Inverse Atmosphere Optic Problems,” Russ. J. Numer. Anal. Math. Model. 17, 283–303 (2002).

    MathSciNet  MATH  Google Scholar 

  10. S. A. Ukhinov and D. I. Yurkov, “Monte Carlo Method of Calculating the Derivatives of Polarized Radiation,” Russ. J. Numer. Anal. Math. Model. 13, 425–444 (1998).

    MathSciNet  MATH  Article  Google Scholar 

  11. K. B. Rakimgulov and S. A. Ukhinov, “Local Estimates in Monte Carlo Method for the Ocean Atmosphere System with a Random Interface,” Russ. J. Numer. Anal. Math. Model. 9, 547–564 (1994).

    MathSciNet  MATH  Article  Google Scholar 

  12. S. A. Ukhinov, “Determination of Special Distribution of Thermal Radiation Sources by Monte Carlo Method,” Russ. J. Numer. Anal. Math. Model. 7, 169–186 (1992).

    MathSciNet  Article  Google Scholar 

  13. G. A. Mikhailov, S. A. Ukhinov, and A. S. Chimaeva, “Variance of a Standard Vector Monte Carlo Estimate in the Theory of Polarized Radiative Transfer,” Zh. Vychisl. Mat. Mat. Fiz. 46, 2199–2212 (2006) [Comput. Math. Math. Phys. 46, 2006 (2006)].

    MathSciNet  Google Scholar 

  14. G. Z. Lotova and G. A. Mikhailov, “New Monte Carlo Methods for Estimating Time Dependences in Radiative Transfer Processes,” Zh. Vychisl. Mat. Mat. Fiz. 42, 569–579 (2002) [Comput. Math. Math. Phys. 42, 544 (2002)].

    MathSciNet  MATH  Google Scholar 

  15. Functional Analysis, Ed. by S. G. Krein (Wolters-Noordhoff, Groningen, 1972; Nauka, Moscow, 1972).

    Google Scholar 

  16. G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov, “Monte Carlo Study of Time Asymptotics of the Polarized Radiation Intensity,” Zh. Vychisl. Mat. Mat. Fiz. 47, 1264–1275 (2007) [Comput. Math. Math. Phys. 47, 1213 (2007)].

    MathSciNet  Google Scholar 

  17. V. S. Vladimirov, “On Application of the Monte-Carlo Method to Find the Least Characteristic Value and the Corresponding Eigenfunction of a Linear Integral Equation,” Teor. Veroyatn. Primen. 1, 113–130 (1956).

    MATH  Google Scholar 

  18. G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov, “The Monte Carlo Method and Analytic Averaging for Estimation of Parameters of Polarized Radiation Asymptotics,” Russ. J. Numer. Anal. Math. Model. 23, 239–250 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  19. S. M. Ermakov and G. A. Mikhailov, Statistical Modeling (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  20. Siberian Supercomputer Center, Server, http://www2.ssce.ru

  21. M. A. Marchenko and G. A. Mikhailov, “Distribution of Computations by Monte Carlo Method,” Avtomat. Telemekhan., No. 5, 157–170 (2007).

  22. IntelMath Kernel Library. Vector Statistical Library Notes, http://Software.intel.com/sites/products/doc-umentation/hpc/mkl/vsl/vslnotes.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mikhailov.

Additional information

Original Russian Text © G.A. Mikhailov, N.V. Tracheva, S.A. Ukhinov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikhailov, G.A., Tracheva, N.V. & Ukhinov, S.A. Monte carlo estimate of backscattering noise asymptotics parameters with allowance for polarization. Atmos Ocean Opt 24, 109 (2011). https://doi.org/10.1134/S1024856011020126

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S1024856011020126

Keywords

  • Oceanic Optic
  • Principal Eigenvalue
  • Monte CARLO Estimate
  • Time Asymptotics
  • Parametric Derivative