Advertisement

Monte carlo estimate of backscattering noise asymptotics parameters with allowance for polarization

  • G. A. MikhailovEmail author
  • N. V. Tracheva
  • S. A. Ukhinov
Optical Waves Propagation

Abstract

We estimate parameters of time asymptotics of the polarized radiation flow emitting from a semi-infinite layer of the scattering and absorbing substance illuminated by an external directed source. Calculations on a multiprocessor cluster demonstrate that, in this case, polarization has no effect on parameters of the asymptotics of reflected radiation determining the “backscattering noise” in optical sensing. For bounded media, parameters of the polarized and nonpolarized radiation asymptotics are different, depending on the size of the transfer region; i.e., depolarization of the radiation flow is slightly delayed relative to the passage to asymptotics.

Keywords

Oceanic Optic Principal Eigenvalue Monte CARLO Estimate Time Asymptotics Parametric Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Monte-Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  2. 2.
    T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Moscow, 2005) [in Russian].Google Scholar
  3. 3.
    B. Davison, Neutron Transport Theory (Clarendon, Oxford, 1957; Atomizdat, Moscow, 1960).zbMATHGoogle Scholar
  4. 4.
    E. P. Zege and I. L. Katsev, “time Asymptotic Solutions of Radiative Transfer Equation Ant Their Applications,” Preprint IF AN BSSR (Minsk, 1973).Google Scholar
  5. 5.
    L. M. Romanova, “Limit Cases of the Free Path Distribution Function of Photons Exiting a Thick Light Diffusing Layer,” Izv. AN SSSR, Fiz. Atmos. Okeana 1, 599–606 (1965).Google Scholar
  6. 6.
    G. W. Kattawar and G. N. Plass, “Radiation and Polarization of Multiple Scattered Light from Haze and Clouds,” Appl. Opt. 7, 1519–1527 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Mikhailov, Optimization of Weight Monte-Carlo Methods (Nauka, Moscow, 1987) [in Russian].Google Scholar
  8. 8.
    S. A. Ukhinov and D. I. Yurkov, “Estimations of Monte-Carlo Methods for Parametric Derivatives of Polarized Radiation,” Sib. Zh. Vychisl. Matem. 5, 40–56 (2002).Google Scholar
  9. 9.
    S. A. Ukhinov and D. I. Yurkov, “Computation of the Parametric Derivatives of Polarized Radiation and the Solution of Inverse Atmosphere Optic Problems,” Russ. J. Numer. Anal. Math. Model. 17, 283–303 (2002).MathSciNetzbMATHGoogle Scholar
  10. 10.
    S. A. Ukhinov and D. I. Yurkov, “Monte Carlo Method of Calculating the Derivatives of Polarized Radiation,” Russ. J. Numer. Anal. Math. Model. 13, 425–444 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    K. B. Rakimgulov and S. A. Ukhinov, “Local Estimates in Monte Carlo Method for the Ocean Atmosphere System with a Random Interface,” Russ. J. Numer. Anal. Math. Model. 9, 547–564 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. A. Ukhinov, “Determination of Special Distribution of Thermal Radiation Sources by Monte Carlo Method,” Russ. J. Numer. Anal. Math. Model. 7, 169–186 (1992).MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. A. Mikhailov, S. A. Ukhinov, and A. S. Chimaeva, “Variance of a Standard Vector Monte Carlo Estimate in the Theory of Polarized Radiative Transfer,” Zh. Vychisl. Mat. Mat. Fiz. 46, 2199–2212 (2006) [Comput. Math. Math. Phys. 46, 2006 (2006)].MathSciNetGoogle Scholar
  14. 14.
    G. Z. Lotova and G. A. Mikhailov, “New Monte Carlo Methods for Estimating Time Dependences in Radiative Transfer Processes,” Zh. Vychisl. Mat. Mat. Fiz. 42, 569–579 (2002) [Comput. Math. Math. Phys. 42, 544 (2002)].MathSciNetzbMATHGoogle Scholar
  15. 15.
    Functional Analysis, Ed. by S. G. Krein (Wolters-Noordhoff, Groningen, 1972; Nauka, Moscow, 1972).Google Scholar
  16. 16.
    G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov, “Monte Carlo Study of Time Asymptotics of the Polarized Radiation Intensity,” Zh. Vychisl. Mat. Mat. Fiz. 47, 1264–1275 (2007) [Comput. Math. Math. Phys. 47, 1213 (2007)].MathSciNetGoogle Scholar
  17. 17.
    V. S. Vladimirov, “On Application of the Monte-Carlo Method to Find the Least Characteristic Value and the Corresponding Eigenfunction of a Linear Integral Equation,” Teor. Veroyatn. Primen. 1, 113–130 (1956).zbMATHGoogle Scholar
  18. 18.
    G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov, “The Monte Carlo Method and Analytic Averaging for Estimation of Parameters of Polarized Radiation Asymptotics,” Russ. J. Numer. Anal. Math. Model. 23, 239–250 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    S. M. Ermakov and G. A. Mikhailov, Statistical Modeling (Nauka, Moscow, 1982) [in Russian].Google Scholar
  20. 20.
    Siberian Supercomputer Center, Server, http://www2.ssce.ru
  21. 21.
    M. A. Marchenko and G. A. Mikhailov, “Distribution of Computations by Monte Carlo Method,” Avtomat. Telemekhan., No. 5, 157–170 (2007).Google Scholar
  22. 22.
    IntelMath Kernel Library. Vector Statistical Library Notes, http://Software.intel.com/sites/products/doc-umentation/hpc/mkl/vsl/vslnotes.pdf

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. A. Mikhailov
    • 1
    • 2
    Email author
  • N. V. Tracheva
    • 1
  • S. A. Ukhinov
    • 1
    • 2
  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations