Skip to main content

Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis

Abstract

The problem of propagation of high-power femtosecond laser pulses in a self-focusing regime and formation of filaments is considered. Comparative analysis of key parameters of the filaments formed in a laser beam in two physically distinct media (atmospheric air and water) is carried out. It is established that the cardinal distinctions in optical parameters of water and air, and, first of all, in values of the Kerr coefficient, chromatic dispersion, and photoionization probability of molecules lead to changes in key characteristics of light and plasma filaments generated in the channel.

This is a preview of subscription content, access via your institution.

References

  1. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort Filaments of Light in Weakly-Ionized, Optically-Transparent Media,” ArXiv: Physics 0612063v1 (2007).

  2. A. Couairon and A. Myzyrowicz, “Femtosecond Filamentation in Transparent Media,” Phys. Rep. 441, 47–189 (2007).

    ADS  Article  Google Scholar 

  3. J. Kasparian and J.-P. Wolf, “Physics and Applications of Atmospheric Nonlinear Optics and Filamentation,” Opt. Express 16, 466–493 (2008).

    ADS  Article  Google Scholar 

  4. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of High-Power Femtosecond Laser Radiation,” Kvant. Elektron. 39, 205–228 (2009) [Quantum. Electron. 39, 560 (2009)].

    ADS  Article  Google Scholar 

  5. Y. Liu, A. Houard, B. Prade, S. Akturk, and A. Mysyrowicz, “Terahertz Radiation Source in Air Based on Bifilamentation of Femtosecond Laser Pulses,” Phys. Rev. Lett. 99, 135002 (2007).

    ADS  Article  Google Scholar 

  6. A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).

    ADS  Article  Google Scholar 

  7. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-Channeling of High-Peak-Power Femtosecond Laser Pulses in Air,” Opt. Lett. 20, 73–75 (1995).

    ADS  Article  Google Scholar 

  8. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyronicz, “Measurement of the Nonlinear Refractive Index of Transparent Materials by Spectral Analysis after Nonlinear Propagation,” Opt. Commun. 119, 479 (1995).

    ADS  Article  Google Scholar 

  9. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-Light Continuum Generation and Filamentation of Ultra-Short Laser Pulses in Air,” Opt. Commun. 191, 353–362 (2001).

    ADS  Article  Google Scholar 

  10. J. Schwarz and J.-C. Diels, “Analytical Solution for UV Filaments,” Phys. Rev. A 65, 013806 (2001).

    ADS  Article  Google Scholar 

  11. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical Emission from Self-Guided Femtosecond Pulses in Air,” Opt. Lett. 21, 62–64 (1996).

    ADS  Article  Google Scholar 

  12. V. P. Kandidov, O. G. Kosareva, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical Emission from Laser-Plasma Interactions in the Filamentation of Powerful Ultrashort Laser Pulses in Air,” Opt. Lett. 22, 1332–1334 (1997).

    ADS  Article  Google Scholar 

  13. T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

    ADS  Article  Google Scholar 

  14. M. A. Porras, “Diffraction Effects in Few-Cycle Optical Pulses,” Phys. Rev. E 65, 026606 (2001).

    ADS  Article  Google Scholar 

  15. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-Evolution of the Plasma Channel at the Trail of a Self-Guided IR Femtosecond Laser Pulse in Air,” Opt. Commun. 181, 123–127 (2000).

    ADS  Article  Google Scholar 

  16. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

  17. L. V. Keldysh, “Ionization in the Field of a Strong Electromagnetic Wave,” Zh. Eksp. Teor. Fiz. 47, 1945–1956 (1964) [Sov. Phys. JETP 20, 1307 (1964)].

    Google Scholar 

  18. N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  19. A. Talebpour, J. Yang, and S. L. Chin, “Semi-Empirical Model for the Rate of Tunnel Ionization of N2 and O2 Molecule in an Intense Ti: Sapphire Laser Pulse,” Opt. Commun. 163, 29–32 (1999).

    ADS  Article  Google Scholar 

  20. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of Atoms in Alternating Electric Field,” Zh. Eksp. Teor. Fiz. 50, 1393–1397 (1966) [Sov. Phys. JETP 23, 924 (1966)].

    Google Scholar 

  21. Yu. E. Geints and A. A. Zemlyanov, “Regime of Nonstationar Self-Action of Tightly Focused Strong Femtosecond Laser Pulse in the Air,” Opt. Atmos. Okeana 21, 793–802 (2008).

    Google Scholar 

  22. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales,” Appl. Phys. B 68, 271–280 (1999).

    ADS  Article  Google Scholar 

  23. P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of Intense Short Laser Pulses in the Atmosphere,” Phys. Rev. E 66, 046418 (2002).

    ADS  Article  Google Scholar 

  24. A. A. Zemlyanov and Yu. E. Geints, “Integral Parameters of High-Power Femtosecond Laser Radiation During Filamentation in Air,” Opt. Atmos. Okeana 18, 574–579 (2005).

    Google Scholar 

  25. A. Couairon and L. Berge, “Modeling the Filamentation of Ultra-Short Pulses in Ionizing Media,” Phys. Plasm. 7, 193–209 (2000).

    ADS  Article  Google Scholar 

  26. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The Critical Laser Intensity of Self-Guided Light Filaments in Air,” Appl. Phys. B 71, 877 (2000).

    ADS  Article  Google Scholar 

  27. J. F. Ripoche, G. Grillon, B. S. Prade, M. A. Franco, E. T. J. Nibbering, H. R. Lange, and A. Mysyrowicz, “Determination of the Time Dependence of n 2 in Air,” Opt. Commun. 135, 310–314 (1997).

    ADS  Article  Google Scholar 

  28. W. Liu, O. G. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond Laser Pulse Filamentation Versus Optical Breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).

    ADS  Article  Google Scholar 

  29. C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown Threshold and Localized Electron Density in Water Induced by Ultrashort Laser Pulses,” J. Appl. Phys. 91, 2530–2536 (2002).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geints, Y.E., Zemlyanov, A.A. Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis. Atmos Ocean Opt 24, 144–151 (2011). https://doi.org/10.1134/S1024856011020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011020060

Keywords

  • Femtosecond Laser
  • Femtosecond Laser Pulse
  • Critical Power
  • Chromatic Dispersion
  • Electron Attachment