Atmospheric and Oceanic Optics

, Volume 24, Issue 2, pp 144–151 | Cite as

Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis

  • Yu. E. Geints
  • A. A. Zemlyanov
Nonlinear Optics


The problem of propagation of high-power femtosecond laser pulses in a self-focusing regime and formation of filaments is considered. Comparative analysis of key parameters of the filaments formed in a laser beam in two physically distinct media (atmospheric air and water) is carried out. It is established that the cardinal distinctions in optical parameters of water and air, and, first of all, in values of the Kerr coefficient, chromatic dispersion, and photoionization probability of molecules lead to changes in key characteristics of light and plasma filaments generated in the channel.


Femtosecond Laser Femtosecond Laser Pulse Critical Power Chromatic Dispersion Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort Filaments of Light in Weakly-Ionized, Optically-Transparent Media,” ArXiv: Physics 0612063v1 (2007).Google Scholar
  2. 2.
    A. Couairon and A. Myzyrowicz, “Femtosecond Filamentation in Transparent Media,” Phys. Rep. 441, 47–189 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kasparian and J.-P. Wolf, “Physics and Applications of Atmospheric Nonlinear Optics and Filamentation,” Opt. Express 16, 466–493 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of High-Power Femtosecond Laser Radiation,” Kvant. Elektron. 39, 205–228 (2009) [Quantum. Electron. 39, 560 (2009)].ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, A. Houard, B. Prade, S. Akturk, and A. Mysyrowicz, “Terahertz Radiation Source in Air Based on Bifilamentation of Femtosecond Laser Pulses,” Phys. Rev. Lett. 99, 135002 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-Channeling of High-Peak-Power Femtosecond Laser Pulses in Air,” Opt. Lett. 20, 73–75 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyronicz, “Measurement of the Nonlinear Refractive Index of Transparent Materials by Spectral Analysis after Nonlinear Propagation,” Opt. Commun. 119, 479 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-Light Continuum Generation and Filamentation of Ultra-Short Laser Pulses in Air,” Opt. Commun. 191, 353–362 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    J. Schwarz and J.-C. Diels, “Analytical Solution for UV Filaments,” Phys. Rev. A 65, 013806 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical Emission from Self-Guided Femtosecond Pulses in Air,” Opt. Lett. 21, 62–64 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Kandidov, O. G. Kosareva, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical Emission from Laser-Plasma Interactions in the Filamentation of Powerful Ultrashort Laser Pulses in Air,” Opt. Lett. 22, 1332–1334 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Porras, “Diffraction Effects in Few-Cycle Optical Pulses,” Phys. Rev. E 65, 026606 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-Evolution of the Plasma Channel at the Trail of a Self-Guided IR Femtosecond Laser Pulse in Air,” Opt. Commun. 181, 123–127 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).Google Scholar
  17. 17.
    L. V. Keldysh, “Ionization in the Field of a Strong Electromagnetic Wave,” Zh. Eksp. Teor. Fiz. 47, 1945–1956 (1964) [Sov. Phys. JETP 20, 1307 (1964)].Google Scholar
  18. 18.
    N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  19. 19.
    A. Talebpour, J. Yang, and S. L. Chin, “Semi-Empirical Model for the Rate of Tunnel Ionization of N2 and O2 Molecule in an Intense Ti: Sapphire Laser Pulse,” Opt. Commun. 163, 29–32 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of Atoms in Alternating Electric Field,” Zh. Eksp. Teor. Fiz. 50, 1393–1397 (1966) [Sov. Phys. JETP 23, 924 (1966)].Google Scholar
  21. 21.
    Yu. E. Geints and A. A. Zemlyanov, “Regime of Nonstationar Self-Action of Tightly Focused Strong Femtosecond Laser Pulse in the Air,” Opt. Atmos. Okeana 21, 793–802 (2008).Google Scholar
  22. 22.
    A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales,” Appl. Phys. B 68, 271–280 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of Intense Short Laser Pulses in the Atmosphere,” Phys. Rev. E 66, 046418 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Zemlyanov and Yu. E. Geints, “Integral Parameters of High-Power Femtosecond Laser Radiation During Filamentation in Air,” Opt. Atmos. Okeana 18, 574–579 (2005).Google Scholar
  25. 25.
    A. Couairon and L. Berge, “Modeling the Filamentation of Ultra-Short Pulses in Ionizing Media,” Phys. Plasm. 7, 193–209 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    J. Kasparian, R. Sauerbrey, and S. L. Chin, “The Critical Laser Intensity of Self-Guided Light Filaments in Air,” Appl. Phys. B 71, 877 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    J. F. Ripoche, G. Grillon, B. S. Prade, M. A. Franco, E. T. J. Nibbering, H. R. Lange, and A. Mysyrowicz, “Determination of the Time Dependence of n 2 in Air,” Opt. Commun. 135, 310–314 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    W. Liu, O. G. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond Laser Pulse Filamentation Versus Optical Breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown Threshold and Localized Electron Density in Water Induced by Ultrashort Laser Pulses,” J. Appl. Phys. 91, 2530–2536 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Yu. E. Geints
    • 1
  • A. A. Zemlyanov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations