Atmospheric and Oceanic Optics

, Volume 24, Issue 2, pp 181–187 | Cite as

Ozone vertical distribution in the troposphere over south regions of Western Siberia

  • B. D. Belan
  • G. N. Tolmachev
  • A. V. Fofonov
Radiation, Optical Weather, and Climate


Dynamics of the tropospheric ozone vertical distribution over one of the Siberian regions is considered based on the data of long-term atmospheric sensing onboard the “Optik-E”. AN-30 aircraft laboratory with the use of a 3-02P chemiluminescence lidar. Two modes are clearly distinguished in the annual variation of ozone vertical distribution: autumn-winter and spring-summer. The change from the autumn-winter mode to the spring-summer one begins near the Earth’s surface in the end of February and ends in the upper troposphere in the end of April; the change back begins in the upper troposphere in the beginning of September and ends in the midtroposphere in the middle of October. Three clearly pronounced maxima and two minima were fixed in the free troposphere during the period under consideration (1997–2009). Not all of them were reflected in the ground layer, as zones of increased ozone concentrations do not reach the upper troposphere. It is most probable that ozone was generated from compounds transported from other regions, due to changes in circulation processes. Peculiarities of ozone distribution in the ground layer are also considered.


Ozone Oceanic Optic Tropospheric Ozone Ground Layer Ozone Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Leung and W. L. Chang, “Some Sharacheristics of Ozone Profiles above Hong Kong,” Meteorol. Atmos. 87, 279–290 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Gupta, S. Lal, S. Venkateramani, T. A. Rajesh, and Y. B. Askarya, “Variability in the Vertical Distribution of Ozon over a Subtropical Sity in India During a Winter Month,” J. Atmos. Sol.-Terr. Phys. 69, 1502–1512 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    J. E. Yorks, A. M. Thompson, E. Joseph, and S. K. Miller, “The Variability of Free Tropospheric Ozone over Beltsville, Maryland (39° N, 77° W) in the Summers 2004–2007,” Atmos. Environ. 43, 1827–1838 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Deshler, D. J. Hofmann, J. V. Hereford, and C. B. Sutter, “Vertical Profiles of Ozone and Aerosol at Mc Murdo Station, Antarctica, in the Spring of 1989,” Antarct. J. US 25, 243–244 (1990).Google Scholar
  5. 5.
    S. Bogdanov and P. Videnov, “Measurement of Ozone Content over Sofia,” Probl. Meteorol. Gidrol., No. 7, 21–26 (1990).Google Scholar
  6. 6.
    M. J. Newchurch, M. A. Ayoub, S. Oltmans, B. Johnson, and F. J. Schmidlin, “Vertical Distribution of Ozone at Four Sites in the United States,” J. Geophys. Res. D 108, 4301 (2003), doi: 10.1029/2002JD002059.CrossRefGoogle Scholar
  7. 7.
    V. A. Yushkov, Kh. Nakane, N. D. Tsvetkova, V. M. Dorokhov, V. I. Sitnikova, and A. N. Luk’yanov, “Study of Ozone Layer State in Winter-Spring Season 2000 Using Balloon Measurements and Ground Observations in Siberia,” Meteorol. Gidrol., No. 12, 27–35 (2002).Google Scholar
  8. 8.
    Y. Tsutsumi, Y. Y. Makino, and J. B. Jensen, “Vertical and Latitudinal Distributions of Tropospheric Ozone over the Western Pacific. Case Studies from the PACE Aircraft Missions,” J. Geophys. Res. D 108, 4251 (2003), doi: 10/1029/2001JD 001374.ADSCrossRefGoogle Scholar
  9. 9.
    I. Pison and L. Menut, “Quantification of the Impact of Aircraft Traffic Emissions on Tropospheric Ozone Paris Area,” Atmos. Environ. 38, 971–983 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Tressoll, C. Ordonez, R. Zbinden, J. Brioude, V. Thoiret, C. Mari, P. Nedelec, J.-P. Cammas, H. Smit, H.-W. Patz, and A. Volz-Thomas, “Air Pollution during the 2003 European Heat Wave as Seen by MOZAIC Airlines,” Atmos. Chem. Phys. 8, 2133–2150 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    B. D. Belan, A. P. Plotnikov, and G. N. Tolmachev, “Seasonal Dynamics of Vertical Distribution of Tropospheric Ozone over Western Siberia,” Opt. Atmos. Okeana 14, 315–318 (2001).Google Scholar
  12. 12.
    A. Boynard, C. Clerbaux, P. F. Coheur, D. Hurtmans, S. Turquety, M. George, J. Hadji-Lazaro, C. Koim, and J. Meyer-Arnek, “Measurements of Total and Tropospheric Ozone from IAST: Comparison with Correlative Satellite, Ground-Based and Ozonesonde Observations,” Atmos. Chem. Phys. 9, 6255–6271 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    H. M. Worden, J. A. Logan, J. R. Worden, R. Beer, K. Bowman, S. A. Clough, A. A. Eldering, B. M. Fisher, M. R. Gunson, R. L. Herman, S. S. Kulawik, M. C. Lampel, M. Luo, I. A. Megretskaia, G. B. Osterman, and M. W. Sherhard, “Comparisons of Tropospheric Emission Spectrometer (TES) Ozone Profiles to Ozonesondes: Methods and Initial Results,” J. Geophys. Res. D 112, 03309 (2007), doi: 10.1029/2006JD007258.CrossRefGoogle Scholar
  14. 14.
    A. M. Thompson, J. C. Witte, H. G. J. Smit, S. J. Oltmans, B. J. Johnson, V. W. Kirchhhoff, and F. J. Schmidlin, “Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 Tropical Ozone Climatology: 3. Instrumentation, Station-To-Ctation Variability, and Evaluation with Simulated Flight Profiles,” J. Geophys. Res. D 112, D03304 (2007), doi: 10.1029/2005JD007042.CrossRefGoogle Scholar
  15. 15.
    M. D. Muller, A. K. Kaifel, M. Weber, S. Tellmann, J. P. Burrows, and D. Loyola, “Ozone Profile Retrieval from Global Ozone Monitoring Experiment (GOME) Data Using a Neural Network Approach (Neural Net- work Ozone Retrieval System (NNORSY),” J. Geophys. Res. D 108, 4497 (2003), doi: 10.1029/2002JD002784.ADSCrossRefGoogle Scholar
  16. 16.
    T. Shibata, M. Maeda, A. Utsunomiya, and T. Mizoguchi, “Simultaneous Measurements of Ozone by UV Lidar and Chemical Ozonesonde,” J. Meteorol. Soc. Jpn. 65, 999–1003 (1987).ADSGoogle Scholar
  17. 17.
    R. Neuber, B. C. Kruger, and O. Schrems, “Remote Measurements of Ozone Concentration and Aerosols in the Arctic Stratosphere,” Fresenius J. Ann. Chem. 340, 650–653 (1991).CrossRefGoogle Scholar
  18. 18.
    O. Couach, I. Balin, R. Jimenez, P. Ristori, S. Peroge, F. Kirchner, V. Simeonov, B. Calpini, and H. Van Den Bergh, “An Investigation of Ozone and Planetary Boundary Layer dynamics over the Complex Topography of Grenoble Combining Measurements and modeling,” Atmos. Chem. Phys. 3, 549–562 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    G. Clain, G. L. Baray, R. Delmas, R. Diab, J. Leclair De Bellevue, P. Keckhut, F. Posny, J. M. Metzger, and J. P. Cammas, “Tropospheric Ozone Climatology at Two Southern Hemisphere Tropicale / Subtropical Sites (Reunion Island and Irene, South Africa) from Ozonesondes, LIDAR, and in Situ Aircraft Measurements,” Atmos. Chem. Phys. 9, 1723–1734 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    H. U. Dutsch, “Vertical Ozone Distribution on a Global Seale,” Pageoph. 116, 511–529 (1978).CrossRefGoogle Scholar
  21. 21.
    S.-H. Hwang, J. Kim, and G.-R. Cho, “Observation of Secondary Ozone Peaks Near the Tropopause over the Korean Peninsula Associated with Stratosphere-Troposphere Exchange,” J. Geophys. Res. D 112, D16305 (2007), doi: 10.1029/2006JD007978.ADSCrossRefGoogle Scholar
  22. 22.
    R. Lemoine, “Secondary Maxima in Ozone Profiles,” Atmos. Chem. Phys. 4, 1085–1096 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    M. Fujiwara, Y. Tomikawa, K. Kita, Y. Kondo, N. Komala, S. Saraspriya, T. Manik, A. Suripto, S. Kawakami, T. Ogawa, E. Kelana, B. Suhardi, S. W. E. Harijono, M. Kudsy, T. Sribimwati, and M. D. Yamanaka, “Ozonesonde Observations in the Indonesian Maritime continent: a Case Study on Ozone Rich Layer in the Equatorial Upper Troposphere,” Atmos. Environ. 37, 353–362 (2003).CrossRefGoogle Scholar
  24. 24.
    H. Teitelbaum, M. Moustaoni, J. Ovarlez, and H. Kelder, “The Role of Atmosphericwaves in the Laminated Structure of Ozone Profiles at High Latitude,” Tellus A 48, 442–455 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    S. J. Oltmans, B. J. Jonuson, J. M. Harris, A. M. Thompson, H. Y. Liu, C. Y. Chan, H. Vomel, T. Fujimoto, V. G. Brakkett, J. P. Chang, J. H. Kim, L. Y. Chan, and H.-W. Chang, “Tropospheric Ozone over the North Pacific from Ozonesonde Observations,” J. Geophys. Res. D 109, D15S01 (2004), doi: 10.1029/2003JD003466.CrossRefGoogle Scholar
  26. 26.
    Z. Xicengerdong, Z. Xiuji, T. Jic, Q. Yu, and C. Chuenyu, “A Meteorological Analysis on a Low Tropospheric Ozone Event over Xining, North Western China on 26–27 July 1996,” Atmos. Environ. 38, 261–271 (2004).CrossRefGoogle Scholar
  27. 27.
    A. T. J. De Laat, “On the Origin of Tropospheric O3 over the Indian Ocean during the Winter Monsoon: African Biomass Burning vs. Stratosphere-Troposphere Exchange,” Atmos. Chem. Phys. 2, 325–341 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    M. Fujiwara, K. Kita, T. Ogawa, S. Kawakami, T. Sano, N. Komala, S. Saraspriya, and A. Suripto, “Seasonal Variation of Tropospheric Ozone in Indonezia Revcaled by 5-Year Ground-Based Observations,” J. Geo- phys. Res. D 105, 1879–1888 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    H. Hayashi, K. Kita, and S. Taguchi, “Ozone-Enhanced Layers in the Troposphere over the Equatorial Pacific Ocean and the Influence of Transport of Midlatitude UT/LS Air,” Atmos. Chem. Phys. 8, 2609–2621 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    Ch.-Y. Lin, C.-C. Chang, C. Y. Chan, C. H. Kuo, W.-C. Chen, D. A. Chu, and S. C. Lin, “Characteris- tics of Springtime Profiles and Sources of Ozone in the Low Troposphere over Northern Taiwan,” Atmos. Environ. 44, 182–193 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    P. Suppan, “Photochemische Untersuchungen Mit Hilfe Eines Bemannten Gasballons,” Wetter Und Leben. 47, 197–206 (1995).Google Scholar
  32. 32.
    P. D. Kalabokas, A. Volz-Thomas, J. Brionde, V. Thouret, J.-P. Cammas, and C. C. Ropapis, “Vertical Ozone Measurements in the Troposphere over the Eastern Mediterranean and Comparison with Central Europe,” Atmos. Chem. Phys. 7, 3783–3790 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    B. Sauvage, V. Thouret, J.-P. Cammax, F. Gheusi, G. Athier, and P. Nedelec, “Tropospheric Ozone over Equatorial Africa: Regional Aspects from the MOZAIC Data,” Atmos. Chem. Phys. 5, 311–335 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kovalevskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Miku- shev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S. M. Sakerin, S. A. Terpugova, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “Aircraft Lab- oratory Antonov-30 “Optik-E” for Ecological Studies,” Opt. Atmos. Okeana 5, 1012–1021 (1992).ADSGoogle Scholar
  35. 35.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, V. S. Shamanaev, and V. P. Shmargunov, “Aircraft Laboratory Antonov-30 “Optik-E”: 20-Year Investigations of the Environ- ment,” Opt. Atmos. Okeana 22, 950–957 (2009).Google Scholar
  36. 36.
    B. D. Belan, “Tropospheric Ozone. 7. Sinks of Ozone in Troposphere,” Opt. Atmos. Okeana 23, 108–127 (2010).Google Scholar
  37. 37.
    P. Jeannet, R. Stubi, G. Levrat, P. Viatte, and J. Staehelin, “Ozone Balloon Soundings at Payerne (Switzerland): Reevaluation of the Time Series 1967–2002 and Trend Analysis,” J. Geophys. Res. D 112, D11302 (2007), Doi: 10.1029/2005JD006862.ADSCrossRefGoogle Scholar
  38. 38.
    J. A. Logan, I. A. Megretskaia, A. J. Miller, G. C. Tiao, D. Choi, L. Zhang, R. S. Stolarski, G. J. Labow, S. M. Hollandswoth, G. E. Bodeker, H. Claude, D. De Muer, J. B. Kerr, D. W. Tarasikk, S. J. Oltmans, B. Johnson, F. Schmidlin, J. Staehelin, P. Viatte, and O. Uchino, “Trends in the Vertical Distribution of Ozone: A Comparison of Two Analyses of Ozonesonde Data,” J. Geophys. Res. D 104, 26373–26399 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, S. B. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Long-Term Variability of the Ozone and Aerosols over Tomsk and Reliability of Their Annualconcentrations Forecasting for Ten Years,” Opt. Atmos. Okeana 23, 772–776 (2010).Google Scholar
  40. 40.
    A. Stohl and P. James, “A 3d Backward Trajectory Database for the TOR-2 Project Provided by the Lagranjian Trajectory Model ELEXTRA,” TOR-2 EUROTRAC Subproject Final Report (Munich, ISS, 2003), pp. 144–159.Google Scholar
  41. 41.
    R. H. Grant and K.-L. Wong, “Ozone Profiles over a Suburban Neighborhood,” Atmos. Environ. 33, 51–63 (1999).CrossRefGoogle Scholar
  42. 42.
    W.-L. Cheng, “A Vertical Profile of Ozone Concentration in the Atmospheric Boundary Layer over Central Taiwan,” Meteorol. Atmos. Phys. 75, 251–258 (2000).ADSCrossRefGoogle Scholar
  43. 43.
    T. Tricki, “Transport Studies by Lidar Sounding—the IFU Activities in 2000,” TOR-2, Annual Report 2000 (Munich, ISS, 2001), pp. 89–93.Google Scholar
  44. 44.
    T. Pregger and R. Friedrich, “Effective Pollutant Emission Heights for Atmospheric Transport Modeling Based on Real-World Information,” Environ. Pollut. 157, 552–560 (2009).CrossRefGoogle Scholar
  45. 45.
    A. Pozzer, P. Jockel, and J. Van Ardenne, “The Influence of the Vertical Distribution of Emissions on Tropospheric Chemistry,” Atmos. Chem. Phys. 9, 9417–9432 (2009).ADSCrossRefGoogle Scholar
  46. 46.
    D. W. Tarasick and J. W. Bottenheim, “Surface Ozone Depletion Episodes in the Arctic and Antarctic from Historical Ozonesonde Records,” Atmos. Chem. Phys. 2, 197–205 (2002).ADSCrossRefGoogle Scholar
  47. 47.
    S.-M. Li, J. W. Winohester, J. D. Kahl, S. J. Oltmans, R. C. Sehnell, and P. J. Sheridan, “Arctic Boundary Layer Ozone Variation Associated with Nitrate, Bromine, and Meteorology: A Case Study,” J. Geophys. Res. D 95, 22433–22440 (1990).ADSCrossRefGoogle Scholar
  48. 48.
    S. Solberg, N. Schmidbauer, A. Semb, F. Stordal, and O. Hov, “Boundary-Layer Ozone Depletion as Sean in the Norvegian Arctic in Spring,” J. Atmos. Chem. 23, 301–332 (1996).CrossRefGoogle Scholar
  49. 49.
    R. E. Mickle, J. W. Bottenheim, W. R. Leaitch, and W. Evans, “Boundary Layer Ozone Depletion During AGASP-II,” Atmos. Environ. 23, 2424–2449 (1989).Google Scholar
  50. 50.
    C. Strong, J. D. Fuentes, R. E. Davis, and J. W. Bottenheim, “Thermodynamic Attributes of Arctic Boundary Layer Ozone Depletion,” Atmos. Environ. 36, 2641–2652 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • B. D. Belan
    • 1
  • G. N. Tolmachev
    • 1
  • A. V. Fofonov
    • 1
  1. 1.Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations