Skip to main content

Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf bands in the middle atmosphere: Vibrational kinetics of oxygen molecules O2(X3Σ g , ν ≤ 35)

Abstract

The advanced version of the full model of O2 and O3 photodissociation in the mesosphere and thermosphere (Yankovsky V.A., Manuilova R.O., Atmospheric and Oceanic optics, 2003, V. 16, No. 7, P. 582) was used for the calculation of vertical profiles of vibrationally excited O2(X, ν) molecular concentrations in the ground electronic state for ν = 1–35. Recent data on the rate constants for reactions O2(X, ν ≤ 30) + O(3P) → O2(X, ν′ < ν) + O(3P) and O2(X, ν) were included for the first time in this model. These reactions play a significant role not only in the quenching of O2(X, ν) molecules, but also in the population of underlying vibrational levels of O2 molecules. In addition to direct processes of the production of O2(X, ν ≤ 35), resulting from O3 photolysis, the processes of population of O2(X, ν ≤ 9) molecules through the energy transfer from O(1D), O2(b, ν ≤ 2), and O2(a, ν ≤ 5) were used in the model. The resulting quantum output (RQO) for O2(X, ν = 1) molecules in process of ozone photolysis in spectral bands of not only Hartley, but also Chappuis, Huggins, and Wulf were calculated in the interval of 200–900 nm. The accounting for new processes caused an increase of RQO by 5–9% in the mesosphere. Vertical profiles of RQO and the populations of O2(X, ν ≤ 35) at heights of 50–120 km, depending on SZA, in a range from 36.0 to 90.1° for a series of TIMED/SABER experiments in the latitude interval from 30.2 to 47.7° N are presented during the period of vernal equinox.

This is a preview of subscription content, access via your institution.

References

  1. V. A. Yankovsky and R. O. Manuilova, “Model of Day-time Emissions of Electronically-Vibrationally Excited Products of O3 and O2 Photolysis: Application to Ozone Retrieval,” Ann. Geophys. 24, 2823–2839 (2006).

    ADS  Article  Google Scholar 

  2. F. Esposito, I. Armehise, G. Capitta, and M. Capitelli, “O-O2 State-to-State Vibrational-Relaxation and Dissociation Rates Based on Quasiclassical Calculations,” Chem. Phys. 351, 91–98 (2008).

    ADS  Article  Google Scholar 

  3. M. V. Ivanov, R. Schinke, and G. C. McBane, “Theoretical Investigation of Vibrational Relaxation of NO(2Γ), O2(X3Σ g ), and N2(1Σg) in Collisions with O(3P),” Mol. Phys. 105, 1183–1191 (2007).

    ADS  Article  Google Scholar 

  4. R. O. Manuilova, V. A. Yankovsky, A. O. Semenov, O. A. Gusev, A. A. Kutepov, O. N. Sulakshina, and Yu. G. Borkov, “Nonequilibrium Radiation of Middle Atmosphere in IR-Bands of Water Vapour,” Opt. Atmos. Okeana 14, 940–943 (2001).

    Google Scholar 

  5. M. López-Puertas, A. Dudhia, M. G. Shepherd, and D. P. Edwards, “Evidence of Non-LTE in the CO2 15 μm Weak Bands from ISAMS and WINDII Observations,” Geophys. Res. Lett. 24, 361–364 (1997).

    ADS  Article  Google Scholar 

  6. M. López-Puertas, and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Sci., Singapore, 2001).

    Book  Google Scholar 

  7. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I-Gas Phase Reactions of Ox, HOx, NOx, and SOx Species,” Atmos. Chem. Phys. 4, 1461–1738 (2004).

    ADS  Article  Google Scholar 

  8. N. Balakrishnan and G. D. Billing, “Quantum-Classical Reaction Path Study of the Reaction O(3P) + O3(1A1) → 2O2(X3Σ g ),” J. Chem. Phys. 104, 9482–9494 (1996).

    ADS  Article  Google Scholar 

  9. K. S. Kalogerakis, D. A. Pejakovic, R. A. Copeland, and T. G. Slanger, “Relative Yield of O2(b 1Σ g , ν = 0 and 1) in O(1D) + O2 Collisions,” EOS Trans. AGU, Vol. 86(52) (2005), Fall Meet. SA11A-0220.

    Google Scholar 

  10. V. A. Yankovsky, “Electronically-Vibrationally Relaxation of O2(b 1Σ g ν = 1, 2) Molecules in Collisions with Ozone, Oxygen Molecules and Atoms,” Khim. Fiz. 10, 291–306 (1991).

    Google Scholar 

  11. T. G. Slanger and R. A. Copeland, “Energetic Oxygen in the Upper Atmosphere and the Laboratory,” Chem. Rev. 103, 4731–4765 (2003).

    Article  Google Scholar 

  12. E. L. Breig, “Statistical Model for the Vibrational Deactivation of Molecular by Atomic Oxygen,” J. Chem. Phys. 51, 4539–4547 (1969).

    ADS  Article  Google Scholar 

  13. D. L. Huestis, “Vibrational Energy Transfer and Relaxation of O2 and H2O#,” J. Phys. Chem. A 110, 6638–6642 (2006).

    Article  Google Scholar 

  14. M. Svanberg, J. B. C. Pettersson, and D. Murtagh, “Ozone Photodissociation in the Hartley Band: A Statistical Description of the Ground State Decomposition Channel O2(X3Σ g ) + O(3P),” J. Chem. Phys. 102, 8887–8896 (1995).

    ADS  Article  Google Scholar 

  15. T. G. Slanger, “Studies on Highly Vibrationally-Excited O2,” in Proceedings of the 32nd Thermophysics Conference, June 23–25, 1997, Atlanta, GA, AIAA-97-2502.

  16. K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, “Vibrational Energy Transfer in O2(X3Σ g , ν = 2, 3) + O2 Collisions at 330 K,” J. Chem. Phys. 123, 044303 (2005), doi: 10.1063/1.1982788.

    ADS  Article  Google Scholar 

  17. C. Coletti and G. D. Billing, “Vibrational Energy Transfer in Molecular Oxygen Collisions,” Chem. Phys. Lett. 356, 14–22 (2002).

    ADS  Article  Google Scholar 

  18. C. A. Rogaski, J. A. Mack, and A. M. Wodtke, “State-to-State Rate Constants for Relaxation of Highly Vibrationally Excited O2 and Implications for Its Atmospheric Fate,” Faraday Discuss 100, 229–251 (1995).

    ADS  Article  Google Scholar 

  19. J. M. Price, J. A. Mack, C. A. Rogaski, and A. M. Wodtke, “Vibrational-State-Specific Self-Relaxation Rate Constant. Measurements of Highly Vibrationally Excited O2(X3Σ g ν = 19–28),” Chem. Phys. 175, 83–98 (1993).

    Article  Google Scholar 

  20. H. Park and T. G. Slanger, “O2(X3Σ g , ν = 8–22) 300 K Quenching Rate Coefficients for O2 and N2, and O2(X) Vibrational Distribution from 248 nm O3 Photodissociation,” J. Chem. Phys. 100, 287–300 (1994).

    ADS  Article  Google Scholar 

  21. K. M. Hickson, P. Sharkey, I. W. M. Smith, A. C. Symonds, R. P. Tuckett, and G. N. Ward, “Formation and Relaxation of O2(X3Σ g ) in High Vibrational Levels (18 ≤ ν ≤ 23) in the Photolysis of O3 at 266 nm,” J. Chem. Soc. Faraday Trans. 94, 533–540 (1998).

    Article  Google Scholar 

  22. M. Klatt, I. W. M. Smith, A. C. Symonds, R. P. Tuckett, and G. N. Ward, “State-Specific Rate Constants for the Relaxation of O2(X3Σ g , ν = 8–11) in Collisions with O2, N2, NO2, CO2, N2O, and He,” J. Chem. Soc. Faraday Trans. 92, 193–199 (1996).

    Article  Google Scholar 

  23. S. Watanabe, S. Usuda, H. Fujii, H. Hatano, I. Tokue, and K. Yamasaki, “Vibrational Relaxation of O2(X3Σ g , ν = 9–13) by Collisions with O2,” Phys. Chem. Chem. Phys. 9, 4407–4413 (2007).

    Article  Google Scholar 

  24. T. S. Ahn, I. Adamovich, and W. R. Lempertand, “Stimulated Raman Scattering Measurements of V-V Transfer in Oxygen,” Chem. Phys. 323, 532–544 (2006).

    ADS  Article  Google Scholar 

  25. V. A. Kuleshova and V. A. Yankovsky, “Model of Electronically-Vibrationally Kinetics of O2 and O3 Photolysis in Middle Earth Atmosphere: Analysis of Sensitivity,” Opt. Atmosf. Okeana 20, 599–609 (2007).

    Google Scholar 

  26. V. A. Yankovsky, V. A. Kuleshova, R. O. Manuilova, and A. O. Semenov, “Reconstruction of Ozone Abundance in Mesosphere on the Base of New Model of Electronically-Vibrationally Kinetics of O3 and O2 Photolysis Products,” Izv. RAN, Fiz. Atmos. Okeana 43, 557–569 (2007).

    Google Scholar 

  27. I. V. Olemskoi, “Algorithm Modification of Structural Features Allocation,” Vestn. S.-Peterb. Univ., Ser. 10, No. 2, 46–55 (2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Yankovsky, A.S. Babaev, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yankovsky, V.A., Babaev, A.S. Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf bands in the middle atmosphere: Vibrational kinetics of oxygen molecules O2(X3Σ g , ν ≤ 35). Atmos Ocean Opt 24, 6–16 (2011). https://doi.org/10.1134/S1024856011010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011010155

Keywords

  • Ozone
  • Photolysis
  • Oceanic Optic
  • Solar Zenith Angle
  • Altitude Profile