Skip to main content

Results of an integrated aerosol experiment in the continent-ocean transition zone (Primorye and the Sea of Japan); Part 1: Variations of atmospheric aerosol optical depth and vertical profiles

Abstract

We discuss the results of an integrated aerosol experiment, performed in spring 2009 simultaneously in two regions: near Ussuriysk and in the Sea of Japan onboard the Nadezhda training boat. For the measurements of aerosol optical depth (AOD) and moisture content of the atmosphere, we used multiwavelength sun photometers operating in the wavelength range 0.34–2.14 μm. The measurements of the vertical profiles of aerosol characteristics were made using two types of lidars: a lidar based on a three-frequency (1.064, 0.532, and 0.355 μm) Big Sky Laser CFR 200 in Primorye and a one-frequency laser based on the second harmonic of the Nd:YAG (0.532 μm) laser onboard the sailing vessel. It was shown that the springtime atmosphere in the Far East region has two times larger aerosol turbidity in comparison with other (maritime and continental) midlatitude regions. Average values of the atmospheric AOD in the region of 0.5 μm were 0.46 in Primorye and 0.35 in the Sea of Japan. The elevated atmospheric turbidity is caused by continental aerosol of different types (smoke, anthropogenic, and dust) blown off the neighboring regions. We present the characteristic vertical profiles of aerosol-molecular scattering for the cases of advection of air masses from arid regions of Southeastern Asia and the boreal zone of Siberia. A relation is demonstrated between the dust activity in the Taklamakan Desert and light scattering characteristics of aerosol layers in tropopause region.

This is a preview of subscription content, access via your institution.

References

  1. Zh. Li, H. Chen, M. Cribb, R. Dickerson, B. Holben, C. Li, D. Lu, Y. Lyo, H. Maring, G. Shi, S.-C. Tsay, P. Wang, X. Xia, Y. Zheng, T. Yuan, and F. Zhao, “Preface to Special Section on East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE),” J. Geophys. Res. 112, D22S00 (2007), doi: 10/1029/2007JD008853.

    Article  Google Scholar 

  2. B. J. Huebert, T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, “An Overview of ACE-Asia: Strategies for Quantifying the Relationships between Asian Aerosols and Their Climatic Impacts,” J. Geophys. Res. 108, D23.8633 (2003), doi: 10/1029/2003JD003550.

    Article  Google Scholar 

  3. Y. F. Luo, D. R. Lu, X. J. Zhou, W. L. Li, and Q. He, “Characteristics of the Spatial Distribution and Yearly Variation of Aerosol Optical Depth over China in Last 30 Years,” J. Geophys. Res. D 106, 14.501–14.513 (2001).

    ADS  Google Scholar 

  4. T. Takamura and Y. Sasano, “Aerosol Optical Properties Inferred from Simultaneous Lidar, Aerosol-Counter, and Sunphotometer Measurements,” J. Meteorol. Soc. Jpn. 68, 729–739 (1990).

    ADS  Google Scholar 

  5. S. M. Sakerin, S. A. Beresnev, S. Yu. Gorda, D. M. Kabanov, G. I. Kornienko, Yu. I. Markelov, A. V. Mikhalev, S. V. Nikolashkin, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, A. Smirnov, M. A. Tashchilin, S. A. Turchi- novich, Yu. S. Turchinovich, B. Kholben, and T. A. Eremina, “Characteristics of Year Trend of Spectral Aerosol Optic Thickness of Atmosphere in Siberia Conditions,” Opt. Atmos. Okeana 22, 566–574 (2009).

    Google Scholar 

  6. S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, V. V. Pol’kin, B. N. Kholben, A. V. Smirnov, S. A. Beresnev, S. Yu. Gorda, G. I. Kornienko, S. V. Nikolashkin, V. A. Poddubnyi, and M. A. Tashchilin, “Monitoring Results of Atmospheric Aerosol in Russia Asian Part in AEROSIBNET Program in 2004,” Opt. Atmos. Okeana 18, 968–975 (2005).

    Google Scholar 

  7. O. A. Bukin, A. N. Pavlov, P. A. Salyuk, Yu. N. Kul’chin, K. A. Shmirko, S. Yu. Stolyarchuk, and A. Yu. Bubnovskii, “Charac Teristics of Altitude Distribution of Aerosol during Development of Dust Storms over Peter the Great Bay in 2006 and Their Effect onto Phytoplankton Associations in the Sea of Japan,” Opt. Atmos. Okeana 20, 341–348 (2007).

    Google Scholar 

  8. S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and E. I. Penner, “Investigations of the Vertical Distribution of Troposphere Aerosol Layers from Multifrequency Laser Sensing Data. 2. The Vertical Distribution of Optical Aerosol Characteristics in the Visible Region,” Opt. Atmos. Okeana 22, 1123–1134 (2009) [Atm. Ocean Opt. 23, 95 (2010)].

    Google Scholar 

  9. S. V. Afonin, V. V. Belov, and M. V. Engel’, “Comparative Analysis of Space Aerosol Data of the MODIS Aerosol Product Type,” Opt. Atmos. Okeana 21, 235–239 (2008).

    Google Scholar 

  10. S. V. Afonin, M. V. Engel’, A. Yu. Maior, A. N. Pavlov, S. Yu. Stolyarchuk, K. A. Shmirko, and O. A. Bukin, “Results of Complex Aerosol Experiment in Transition Continent-Ocean Zone (Primorye and Japan Sea). Part 2. Space-Time Variability of Aerosol Characteristics and Humidity by Satellite Data,” Opt. Atmos. Okeana 23(9) (2010, in press).

  11. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Temporal Variability of Submicrone Aerosol and Carbon-Black Content in Ground Layer of Atmosphere in West Siberia,” Opt. Atmos. Okeana 20, 1082–1085 (2007).

    Google Scholar 

  12. V. S. Kozlov, A. B. Tikhomirov, M. V. Panchenko, V. P. Shmargunov, V. V. Pol’kin, S. M. Sakerin, A. P. Lisitsyn, and V. P. Shevchenko, “Optical and Microphysical Parameters of Aerosol in the Near Water Atmosphere of the White Sea as Assessed from the Data of Simultaneous Ship Borne and Coast Based Measurements in August 2006,” Opt. Atmos. Okeana 22, 767–776 (2009) [Atm. Ocean Opt. 22, 517 (2009)].

    Google Scholar 

  13. V. S. Kozlov, V. V. Pol’kin, M. V. Panchenko, L. P. Golobokova, Yu. S. Turchinovich, and T. V. Khodzher, “Results of Complex Aerosol Experiment in Transition Continent-Ocean Zone (Primorye and Japan Sea). Part 3. Microphysical Characteristics and Ionic Compound of Aerosol in Ground Layer,” Opt. Atmos. Okeana 23(11) (2010, in press).

  14. S. M. Sakerin, D. M. Kabanov, A. P. Rostov, and S. A. Turchinovich, “Portative Solar Photometer,” Prib. Tekh. Eksp., No. 2, 181–182 (2009).

  15. D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar Photometer for Scientific Monitoring (Equipment, Methods, Algorithms),” Opt. Atmos. Okeana 14, 1162–1169 (2001).

    Google Scholar 

  16. D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information System for Network Solar Photometers,” Opt. Atmos. Okeana 22, 61–67 (2009).

    Google Scholar 

  17. S. M. Sakerin, V. V. Veretennikov, T. B. Zhuravleva, D. M. Kabanov, and I. M. Nasrtdinov, “Comparaive Analysis of Radiation Aerosol Charakteristics in Situations of Forest Fire Smokes and Normal Conditions,” Opt. Atmos. Okeana 23, 451–461 (2010).

    Google Scholar 

  18. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66, 1–16 (1998).

    Article  Google Scholar 

  19. F. Marenco, V. Santacesaria, A. F. Bais, D. Balis, Alcide di Sarra, A. Papayannis, and C. Zerefos, “Optical Properties of Tropospheric Aerosols Determined by Lidar and Spectrophotometric Measurements (Photochemical Activity and Solar Ultraviolet Radiation Campaign),” Appl. Opt. 36, 6875–6886 (1997).

    ADS  Article  Google Scholar 

  20. J. Klet, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211–220 (1981).

    ADS  Article  Google Scholar 

  21. J. Reichardt and S. Reichardt, “Correlations Among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation,” J. Geophys. Res. D 107, 4562 (2002), doi: 10.1029/2002JD002589.

    ADS  Article  Google Scholar 

  22. V. S. Kumara, K. Parameswarana, Krishna, and B. V. Murthy, “Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General Features,” Atmos. Res. 66, 203–227 (2003), doi: 10.1016/S01698095(02)00159-x.

    Article  Google Scholar 

  23. E. V. Yarkho, “Temporal Variability of Aerosol Optical Thickness of the Atmosphere in Various Climatic Regions,” Izv. RAN, Fiz. Atmos. Okeana 30, 417–424 (1994).

    Google Scholar 

  24. S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol Optical Depth of the Atmosphere over Ocean in the Wavelength Range 0.37–4 μm,” Int. J. Remote Sens. 29, 2519–2547 (2008), doi: 10.1080/01431160701767492.

    ADS  Article  Google Scholar 

  25. S. M. Sakerin and D. M. Kabanov, “Spatial Distribution of Aerosol Component of Atmosphere Transparency above Atlantic Ocean,” Opt. Atmos. Okeana 12, 99–104 (1999).

    Google Scholar 

  26. K. Eguchi, I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, “Transpacific Dust Transport: Integrated Analysis of NASA / CALIPSO and a Global Aerosol Transport Model,” Atmos. Chem. Phys. 9, 3137–3145 (2009).

    ADS  Article  Google Scholar 

  27. Itsushi Uno, K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Z. Liu, Z. Wang, Y. Hara, and N. Sugimoto, “Asian Dust Transported One Full Circuit Around the Globe,” Nature Geosci. Let. Advance Online Publ. (20 July 2009), doi: 10.1038/NGEO583.

  28. Tetsu Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, “Ice Clouds and Asian Dust Studied with Lidar Measurements of Particle Extinction-to-Backscatter Ratio, Particle Depolarization, and WaterVapor Mixing Ratio over Tsukuba,” Appl. Opt. 42, 7103–7116 (2003).

    ADS  Article  Google Scholar 

  29. Zhaoyan Liu, N. Sugimoto, and T. Murayama, “Extinction-to-Backscatter Ratio of Asian Dust Observed with High-Spectral-Resolution Lidar and Raman Lidar,” Appl. Opt. 41, 2760–2766 (2002).

    ADS  Article  Google Scholar 

  30. M. Mikami, G. Y. Shi, I. Uno, S. Yabuki, Y. Iwasaka, M. Yasui, T. Aoki, T. Y. Tanaka, Y. Kurosaki, K. Masuda, A. Uchiyama, A. Matsuki, T. Sakai, T. Takemi, M. Nakawo, N. Seino, M. Ishizuka, S. Satake, K. Fujita, Y. Hara, K. Kai, S. Kanayama, M. Hayashi, M. Du, Y. Kanai, Y. Yamada, X. Y. Zhang, Z. Shen, H. Zhou, O. Abe, T. Nagai, Y. Tsutsumi, M. Chiba, and J. Suzuki, “Aeolian Dust Experiment on Climate Impact: An Overview of Japan-China Joint Project ADEC,” Global Planet. Change 52, 142–172 (2006).

    ADS  Article  Google Scholar 

  31. Y. Shao and C. H. Dong, “A Review on East Asian Dust Storm Climate, Modelling and Monitoring,” Global Planet. Change 52, 1–22 (2006).

    ADS  Article  Google Scholar 

  32. Y. Iwasaka, G.-Y. Shi, D. Trochkine, A. Matsui, Y. S. Kim, M. Yamada, and T. Nagatani, “Processes of Background KOSA Outbreak,” in Proceedings of the EMEA 2005 in Kanazawa, 2005, Intern. Sympos. on Environmental Monitoring in East Asia–Remote Sensing and Forests, pp. 20–36.

  33. Itsushi Uno, K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Z. Liu, Z. Wang, Y. Hara, and N. Sugimoto, “Asian Dust Transported One Full Circuit Around the Globe,” Nature Geosci. Lett. Advance Online Publ. (20 July 2009), doi: 10.1038/NGEO583.

  34. O. A. Bukin, K. A. Shmirko, A. Yu. Maior, A. N. Pavlov, S. Yu. Stolyarchuk, G. I. Kornienko, and D. V. Erofeev, “Specific Features of the Size Distribution of Atmospheric Aerosol in the Continent-Ocean Transition Zone,” Izv. RAN, Fiz. Atmos. Okeana 46(2), 50–56 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Sakerin, A.N. Pavlov, O.A. Bukin, D.M. Kabanov, G.I. Kornienko, V.V. Pol’kin, S.Yu. Stolyarchuk, Yu.S. Turchinovich, K.A. Shmirko, A.Yu. Mayor, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakerin, S.M., Pavlov, A.N., Bukin, O.A. et al. Results of an integrated aerosol experiment in the continent-ocean transition zone (Primorye and the Sea of Japan); Part 1: Variations of atmospheric aerosol optical depth and vertical profiles. Atmos Ocean Opt 24, 64–73 (2011). https://doi.org/10.1134/S102485601101012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601101012X

Keywords

  • Lidar
  • Planetary Boundary Layer
  • Aerosol Optical Depth
  • Dust Aerosol
  • Taklamakan Desert