Skip to main content

Spatial and energy characteristics of nanofields in the vicinity of isolated spherical particles

Abstract

Theoretical aspects of the extreme focusing of the optical field to a spatial zone of the subwavelength size are considered in the case of using isolated nanometer- and micrometer-sized spherical particles for this purpose. The intensity of the optical field near the surface of nanospheres of some metals in environments with different values of the refractive index under the exposure to laser radiation in a wide spectral range is calculated numerically. It is shown that as the particle radius decreases, the relative intensity of the optical field of surface plasmons increases and the zone of field nanofocusing shortens. The obtained data are compared with the calculations for gold and aluminum nanoparticles in water. Numerical results illustrating the influence of the shell thickness of composite nanoparticles (dielectric nucleus and metal shell) on the intensity of the optical field of plasmon modes are obtained. The problem of local optical focuses of a transparent microparticle or the so-called photonic nanojets is considered. It is found that varying a micron particle size, its optical properties, and laser radiation parameters allows us to efficiently control the amplitude and spatial characteristics of the photonic nanojet zone.

This is a preview of subscription content, access via your institution.

References

  1. T. Sugiura, S. Kawata, and T. Okada, “Fluorescence Imaging with a Laser Trapping Scanning Near-Field Optical Microscope,” J. Microscopy 194, 291–294 (1999).

    Article  Google Scholar 

  2. W. Denk and D. W. Pohl, “Near-Field Optics: Microscopy with Nanometer-Size Fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).

    Article  Google Scholar 

  3. S. E. Lyshevski, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering (CRC Press, 2005).

  4. S. Katawa, Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, New York, 2001).

    Book  Google Scholar 

  5. K. R. Simovskii, S. A. Tret’yakov, and A. J. Viitanen, “Subwavelength Imaging in a Superlens of Plasmon Nanospheres,” Pis’ma Zh. Tekh. Fiz. 33(6), 76–82 (2007) [Tech. Phys. Lett. 33, 264 (2007)].

    Google Scholar 

  6. A. E. Neeves and M. H. Birnboin, “Composite Structures for the Enhancement of Nonlinear-Optical Susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).

    ADS  Article  Google Scholar 

  7. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct Imaging of Photonic Nanojets,” Opt. Express 16, 6930–6940 (2008).

    ADS  Article  Google Scholar 

  8. Z. Chen, A. Taflove, and V. Backman, “Photonic Nanojet Enhancement of Backscattering of Light by Nanoparticles: A Potential Novel Visible-Light Ultramicroscopy Technique,” Opt. Express 12, 1214–1220 (2004).

    ADS  Article  Google Scholar 

  9. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral Analysis of Three-Dimensional Photonic Jets,” Opt. Express 16, 14200–14212 (2008).

    ADS  Article  Google Scholar 

  10. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction Optical Resolution of a Gold Nanosphere Located Within the Nanojet of a Mie-Resonant Dielectric Microsphere,” Opt. Express 15, 17334–17342 (2007).

    ADS  Article  Google Scholar 

  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  12. H. Ehrenreich, H. R. Philipp, and B. Segall, “Anisotropy Corrections to the Valence Band in the Magnetic Field,” Phys. Rev. 132, 1918–1928 (1963).

    ADS  Article  Google Scholar 

  13. C. G. Granqvist and O. Hunderi, “Optical Properties of Ultrafine Gold Particles,” Phys. Rev. B 16, 3513–3538 (1977).

    ADS  Article  Google Scholar 

  14. U. Kreibig and C. V. Fragstein, “The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Phys. A 224, 307–323 (1969).

    Google Scholar 

  15. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Mel’nikov, “Spectral Properties of Colloid Gold,” Opt. Spektrosk. 80, 128–137 (1996) [Opt. Spectrosc. 80, 113 (1996)].

    Google Scholar 

  16. A. Pinchuk, G. Von Plessen, and U. Kreibig, “Influence of Interband Electronic Transitions on the Optical Absorption in Metallic Nanoparticles,” J. Appl. Phys. D 37, 3133–3139 (2004).

    ADS  Article  Google Scholar 

  17. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1985), p. 286.

    Google Scholar 

  18. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).

    MATH  Google Scholar 

  19. Yu. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Izd-vo SO RAN, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  20. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear Optical Properties of Gold Nanospheres,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).

    ADS  Article  Google Scholar 

  21. A. W. H. Lin, N. A. Lewinski, M.-H. Lee, and R. A. Drezek, “Reflectance Spectroscopy of Gold Nanoshells: Computational Predictions and Experimental Measurements,” J. Nanopart. Res. 8, 681–692 (2006).

    Article  Google Scholar 

  22. B. Stout, C. Andraud, S. Stout, and J. Lafait, “Absorption in Multiple Scattering Systems of Coated Spheres,” J. Opt. Soc. Am. A 20, 1050–1059 (2003).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, E.K. Panina, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geints, Y.E., Zemlyanov, A.A. & Panina, E.K. Spatial and energy characteristics of nanofields in the vicinity of isolated spherical particles. Atmos Ocean Opt 24, 39–46 (2011). https://doi.org/10.1134/S1024856011010076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011010076

Keywords

  • Plasmon Resonance
  • Plasmon Mode
  • Metal Shell
  • Plasmon Resonance Frequency
  • Laser Radiation Parameter