M. R. Cherkasov, “Effects of Collisional Interference of Lines in the Spectra of Symmetric Top Molecules. III. Broadening of Rotational Transitions with Hyperfine Structure,” Opt. Spektrosk. 107, 586–595 (2009).
Article
Google Scholar
J. A. Roberts, T. K. Tung, and C. C. Lin, “Linewidths of the Rotational Spectra of Symmetric-Top Molecules,” J. Chem. Phys. 48, 4046–4049 (1968).
ADS
Article
Google Scholar
W. R. MacGillivray, “The Measurements of Widths and Pressure-Induced Shifts of Rotational Lines in the Microwave Region,” J. Phys. B 9, 2511–2520 (1976).
ADS
Article
Google Scholar
G. R. Bird, “Saturation in the Microwave Spectrum of Methyl Chloride,” Phys. Rev. 95, 1686 (1954).
ADS
Article
Google Scholar
J. A. Roberts and R. W. Parsons, “Self and Foreign Gas Broadening of the J = 0 → 1 Line in the Rotational Spectrum of Methyl Chloride,” J. Mol. Spectrosc. 20, 195–197 (1966).
ADS
Article
Google Scholar
W. E. Wensink, H. A. Dijkerman, and R. W. Parsons, “The Broadening and Shifting of the J = 0 → 1 Line of CH3Cl by the Foreign Gases CH3Br, OCS, and CO2,” Phys. Lett. A 50, 331–332 (1974).
ADS
Article
Google Scholar
S. C. M. Luijendijk, “On the Shape of Pressure-Broadened Absorption Lines in the Microwave Region. II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B 10, 1741–1747 (1977).
ADS
Article
Google Scholar
P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–658 (1949).
ADS
MATH
Article
Google Scholar
C. J. Tsao and B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Rad. Transfer. 2, 41–91 (1962).
ADS
Article
Google Scholar
M. R. Cherkasov, “Collisional Interference of Lines in the Spectra of Symmetric Top Molecules: I. A Theory of Relaxation Parameters of the Shape of the Spectrum in the Impact Approximation,” Opt. Spektrosk. 105, 932–939 (2008) [Opt. Spectrosc. 105, 851 (2008)].
Article
Google Scholar
M. R. Cherkasov, “Effects of Collisional Interference of Lines in the Spectra of Symmetric Top Molecules: II. Self- and Foreign-Gas-Broadening of Rotational Spectral Lines,” Opt. Spektrosk. 106, 5–13 (2009) [Opt. Spectrosc. 106, 1 (2009)].
ADS
Article
Google Scholar
I. I. Sobelman, Theory of Atomic Spectra (Fizmatgiz, Moscow, 1963; Alpha Sci., UK, 2006).
Google Scholar
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, London, Toronto, 1955; Inostr. Liter., Moscow, 1959)
Google Scholar
A. Nikitin and J. P. Champion, “New Ground States Constants of 12CH3
35Cl and 12CH3
37Cl from Global Polyad Analysis,” J. Mol. Spectrosc. 230, 168–173 (2005).
ADS
Article
Google Scholar
S. Carocci, A. di Lieto, A. di Fanis, P. Mangussi, S. Alanko, and J. Pietala, “The Molecular Constants of 12CH3I in the Ground and υ6 Exited Vibrational States,” J. Mol. Spectrosc. 191, 368–373 (1998).
ADS
Article
Google Scholar
D. Papousek, Y. C. Hsu, H. S. Chen, P. Pracna, et al., “Vibration-Rotational Interactions in the States υ2 = 1 and υ = 1 of H3
12CF,” J. Mol. Spectrosc. 153, 145–156 (1992).
ADS
Article
Google Scholar
V. H. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line Mixing and Speed Dependence in CO2 at 6348 cm−1: Positions, Intensities, and Air- and Self-Broadening Derived with Constrained Multispectrum Analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
ADS
Article
Google Scholar
R. Karplus and A. H. Sharbaugh, “Second-Order Stark Effect of Methyl Chloride,” Phys. Rev. 75, 889–890 (1949); Phys. Rev. 75, 1449 (1949).
ADS
Article
Google Scholar
S. Carocci, Di A. Lieto, M. Tonelli, and P. Mingussi, “Measurement of the Electric Dipole Moment of Methyl Iodide,” J. Mol. Spectrosc. 144, 429–442 (1990).
ADS
Article
Google Scholar
S. C. Wofsy, J. J. Muenter, and W. Klemperer, “Determination of Hypetfine Constants and Nuclear Shielding in Methyl Fluoride and Comparision with Other Molecules,” J. Chem. Phys. 55, 2014–2020 (1971).
ADS
Article
Google Scholar
T. W. Mayer, C. K. Rhodes, and H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993–2008 (1975).
ADS
Article
Google Scholar