Skip to main content

Effects of hyperfine splitting of levels in the pressure broadening of the methyl chloride rotational transitions

Abstract

Features of the methyl chloride isotopes 12CH3 35Cl, 12CH3 37Cl rotational transitions broadening, associated with the hyperfine splitting of levels due to the nuclear quadrupole interaction, are considered in the framework of impact approximation. The relaxation parameters are calculated and the values of the broadening coefficients are compared with experimental data. The character of the doublet transition contour shape transformation by pressure is investigated.

This is a preview of subscription content, access via your institution.

References

  1. M. R. Cherkasov, “Effects of Collisional Interference of Lines in the Spectra of Symmetric Top Molecules. III. Broadening of Rotational Transitions with Hyperfine Structure,” Opt. Spektrosk. 107, 586–595 (2009).

    Article  Google Scholar 

  2. J. A. Roberts, T. K. Tung, and C. C. Lin, “Linewidths of the Rotational Spectra of Symmetric-Top Molecules,” J. Chem. Phys. 48, 4046–4049 (1968).

    ADS  Article  Google Scholar 

  3. W. R. MacGillivray, “The Measurements of Widths and Pressure-Induced Shifts of Rotational Lines in the Microwave Region,” J. Phys. B 9, 2511–2520 (1976).

    ADS  Article  Google Scholar 

  4. G. R. Bird, “Saturation in the Microwave Spectrum of Methyl Chloride,” Phys. Rev. 95, 1686 (1954).

    ADS  Article  Google Scholar 

  5. J. A. Roberts and R. W. Parsons, “Self and Foreign Gas Broadening of the J = 0 → 1 Line in the Rotational Spectrum of Methyl Chloride,” J. Mol. Spectrosc. 20, 195–197 (1966).

    ADS  Article  Google Scholar 

  6. W. E. Wensink, H. A. Dijkerman, and R. W. Parsons, “The Broadening and Shifting of the J = 0 → 1 Line of CH3Cl by the Foreign Gases CH3Br, OCS, and CO2,” Phys. Lett. A 50, 331–332 (1974).

    ADS  Article  Google Scholar 

  7. S. C. M. Luijendijk, “On the Shape of Pressure-Broadened Absorption Lines in the Microwave Region. II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B 10, 1741–1747 (1977).

    ADS  Article  Google Scholar 

  8. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–658 (1949).

    ADS  MATH  Article  Google Scholar 

  9. C. J. Tsao and B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Rad. Transfer. 2, 41–91 (1962).

    ADS  Article  Google Scholar 

  10. M. R. Cherkasov, “Collisional Interference of Lines in the Spectra of Symmetric Top Molecules: I. A Theory of Relaxation Parameters of the Shape of the Spectrum in the Impact Approximation,” Opt. Spektrosk. 105, 932–939 (2008) [Opt. Spectrosc. 105, 851 (2008)].

    Article  Google Scholar 

  11. M. R. Cherkasov, “Effects of Collisional Interference of Lines in the Spectra of Symmetric Top Molecules: II. Self- and Foreign-Gas-Broadening of Rotational Spectral Lines,” Opt. Spektrosk. 106, 5–13 (2009) [Opt. Spectrosc. 106, 1 (2009)].

    ADS  Article  Google Scholar 

  12. I. I. Sobelman, Theory of Atomic Spectra (Fizmatgiz, Moscow, 1963; Alpha Sci., UK, 2006).

    Google Scholar 

  13. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, London, Toronto, 1955; Inostr. Liter., Moscow, 1959)

    Google Scholar 

  14. A. Nikitin and J. P. Champion, “New Ground States Constants of 12CH3 35Cl and 12CH3 37Cl from Global Polyad Analysis,” J. Mol. Spectrosc. 230, 168–173 (2005).

    ADS  Article  Google Scholar 

  15. S. Carocci, A. di Lieto, A. di Fanis, P. Mangussi, S. Alanko, and J. Pietala, “The Molecular Constants of 12CH3I in the Ground and υ6 Exited Vibrational States,” J. Mol. Spectrosc. 191, 368–373 (1998).

    ADS  Article  Google Scholar 

  16. D. Papousek, Y. C. Hsu, H. S. Chen, P. Pracna, et al., “Vibration-Rotational Interactions in the States υ2 = 1 and υ = 1 of H3 12CF,” J. Mol. Spectrosc. 153, 145–156 (1992).

    ADS  Article  Google Scholar 

  17. V. H. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line Mixing and Speed Dependence in CO2 at 6348 cm−1: Positions, Intensities, and Air- and Self-Broadening Derived with Constrained Multispectrum Analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).

    ADS  Article  Google Scholar 

  18. R. Karplus and A. H. Sharbaugh, “Second-Order Stark Effect of Methyl Chloride,” Phys. Rev. 75, 889–890 (1949); Phys. Rev. 75, 1449 (1949).

    ADS  Article  Google Scholar 

  19. S. Carocci, Di A. Lieto, M. Tonelli, and P. Mingussi, “Measurement of the Electric Dipole Moment of Methyl Iodide,” J. Mol. Spectrosc. 144, 429–442 (1990).

    ADS  Article  Google Scholar 

  20. S. C. Wofsy, J. J. Muenter, and W. Klemperer, “Determination of Hypetfine Constants and Nuclear Shielding in Methyl Fluoride and Comparision with Other Molecules,” J. Chem. Phys. 55, 2014–2020 (1971).

    ADS  Article  Google Scholar 

  21. T. W. Mayer, C. K. Rhodes, and H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993–2008 (1975).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.R. Cherkasov, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cherkasov, M.R. Effects of hyperfine splitting of levels in the pressure broadening of the methyl chloride rotational transitions. Atmos Ocean Opt 24, 22–29 (2011). https://doi.org/10.1134/S1024856011010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011010052

Keywords

  • Oceanic Optic
  • Relaxation Parameter
  • Rotational Transition
  • Hyperfine Splitting
  • Impact Approximation