Skip to main content

Disturbances of aerosol optical thickness of the atmosphere caused by forest fires in Yakutia


he aerosol optical thickness (AOT) and pyrogenic event variations in central Yakutia are studied using the remote data (NOAA, Terra and Aqua) for May–September 2000–2009. It is shown that the average summer (June–August) AOT for years with a high pyrogenic activity (2001–2003) is by about 125% greater in comparison with the years with a low pyrogenic activity (2000 and 2004–2009); the daily AOT in central Yakutia on some days with the highest pyrogenic activity significantly exceeded the background (undisturbed) values reaching 1.5–1.6.

This is a preview of subscription content, access via your institution.


  1. G. N. Korovin and A. S. Isaev, “Protection of Forests from Fires as Important Element of National Safety in Russia,” Lesn. Byull., Nos. 8–9, 4–5 (1998).

  2. S. V. Afonin, V. V. Belov, B. D. Belan, M. V. Panchenko, S. M. Sakerin, and D. M. Kabanov, “Comparison of Satellite (AVHRR/NOAA) and Ground Measurements of Atmospheric Aerosol Characteristics,” Opt. Atmosf. Okeana 15, 1118–1123 (2002).

    Google Scholar 

  3. S. V. Afonin, V. V. Belov, M. V. Panchenko, S. M. Sakerin, and M. V. Engel’, “Correlation Analysis of Spatial Fields of Aerosol Optic Thickness Based on the MODIS Satellite Data,” Opt. Atmosf. Okeana 21(6), 510–515 (2008).

    Google Scholar 

  4. A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Natural and Antropogenic Aerosol Impact on Global and Regional Climate,” Ros. Khim. Zh. 52(5), 112–119 (2008).

    Google Scholar 

  5. V. S. Solov’ev and E. K. Vasil’ev, “Satellite Monitoring of Forest Fires and Estimation of Their Consequences,” Nauka Obrazov., AN RS (Ya), No. 4 (20), 24–27 (2000).

  6. V. S. Solov’ev, Satellite Monitoring in Yakutia, Sb. Statei “Cosmophysical Investigations in Yakutia”, Yakutsk, Yad. Fiz. Izd-Va SO RAN, 2001, S. 302–308.

  7. V. S. Solov’ev and V. I. Kozlov, “Study of Space-Time Dynamics of Forest Fires and Overcast in North-Asian Region According to NOAA Satellites Data,” Opt. Atmosf. Okeana 18, 146–149 (2005).

    Google Scholar 

  8. N. A. Abushenko, D. A. Altyntsev, N. P. Min’ko, S. M. Semenov, S. A. Tashchilin, and A. V. Tatarnikov, “Algorithm of Fires Detection Using Multispectral Data of AVHRR Device,” in Proc. of the 6h Intern. symp. on Optics of Atmosphere and Ocean (Tomsk, 1999), p. 69.

  9. L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R. R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS Aerosol Algorithm, Products, and Validation,” J. Atmos. Sci. 62(14), 947–972 (2005).

    Article  ADS  Google Scholar 

  10. S. M. Sakerin, S. A. Beresnev, S. Yu. Gorda, D. M. Kabanov, G. I. Kornienko, Yu. I. Markelov, A. V. Mikhalev, S. V. Nikolashkin, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, A. Smirnov, M. A. Tashchilin, S. A. Tur- chinovich, Yu. S. Turchinovich, B. Kholben, and T. A. Eremina, “Characteristics of Year Trend of Spectral Aerosol Optic Thickness of Atmosphere in Siberia Conditions,” Opt. Atmosf. Okeana 22(6), 566–574 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © V.S. Solovyev, A.A. Budishchev, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solovyev, V.S., Budishchev, A.A. Disturbances of aerosol optical thickness of the atmosphere caused by forest fires in Yakutia. Atmos Ocean Opt 23, 538–541 (2010).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Forest Fire
  • Oceanic Optic
  • Varia Tions
  • Fire Danger
  • Aerosol Optical Thickness