Atmospheric and Oceanic Optics

, Volume 23, Issue 6, pp 528–537 | Cite as

On daytime variations of atmospheric aerosol optical depth and aerosol radiative forcing

  • T. B. Zhuravleva
  • D. M. Kabanov
  • S. M. Sakerin
Atmospheric Radiation, Optical Weather, and Climate


Based on the results of multiyear measurements of spectral atmospheric transparency in the wavelength range of 0.37–4 μm, we discuss the regularities of daytime variations of the characteristics of aerosol optical depth (AOD) and atmospheric moisture content in a typical Siberian region (Tomsk). For different atmospheric conditions (seasons, air masses), quantitative characteristics of the average daytime behavior of the spectral AOD and Angstrom parameters are presented. We suggest an empirical model for the daytime behavior of atmospheric AOD in the wavelength region of 0.37–4 μm, which is based on the use of the daily average values of the Angstrom parameters. We discuss the effect of the daytime AOD variations on the instantaneous and daily average values of the aerosol radiative forcing at the underlying surface level and at the top of the atmosphere. The aerosol radiative effects are analyzed taking into account both the average daytime variations of the AOD as well as relatively large AOD variations during the day characteristic of a concrete situation.


Solar Zenith Angle Aerosol Optical Thickness Aerosol Radiative Aerosol Radiative Force Atmospheric Moisture Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Sidorov, G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Diurnal Behavior of the Optical and Microphysical Characteristics of Surface Aerosol,” Izv. AN SSSR, Fiz. Atmosf. Okeana 20(12), 1156–1164 (1984).ADSGoogle Scholar
  2. 2.
    L. S. Ivlev and S. D. Andreev, Optical Properties of Atmospheric Aerosols (Leningr. Gos. Univ., Leningrad, 1986) [in Russian].Google Scholar
  3. 3.
    M. V. Panchenko and S. A. Terpugova, “Seasonal Factors of the Variability of the Submicron Aerosol Characteristic. 2. Diurnal Trend (Vertical Profile),” Opt. Atmosf. Okeana 9(6), 735–742 (1996).Google Scholar
  4. 4.
    M. V. Panchenko, Yu. A. Pkhalagov, R. F. Rakhimov, S. M. Sakerin, and B. D. Belan, “Geophysical Factors of Formating of Aerosol Nature in West Siberia,” Opt. Atmosf. Okeana 12, 922–934 (1999).Google Scholar
  5. 5.
    G. P. Gushchin, Methods, Instruments, and Results of Measurements of Atmospheric Spectral Transparency (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  6. 6.
    G. M. Abakumova and E. V. Yarkho, “Changes in Aerosol Optical Thickness of the Whole Atmosphere Over Moscow for the Last 37 Years,” Meteorol. Gidrol., No. 11, 107–113 (1992).Google Scholar
  7. 7.
    Handbook on Ecological-Climatic Characteristics of the City of Moscow (by Observations of Meteorologic Observatory of Moscow State University), Vol. 1 (Mosc. Univ., Moscow, 2003) [in Russian].Google Scholar
  8. 8.
    A. V. Mikhalev and M. A. Tashchilin, “Aerosol Optical Depth and Its Variations in the Eastern Siberia Region (Tunka Valley) in 2004–2008,” Opt. Atmosf. Okeana 22, 575–578 (2009).CrossRefGoogle Scholar
  9. 9.
    D. M. Kabanov and S. M. Sakerin, “Variations of the Aerosol Optical Depth of the Atmosphere Above Tomsk for a Number of Seasons in 1992–1995,” Opt. Atmosf. Okeana 9, 727–734 (1996).Google Scholar
  10. 10.
    A. Smirnov, B. N. Holben, T. F. Eck, I. Slutsker, B. Chatenet, and R. T. Pinker, “Diurnal Variability of Aerosol Optical Depth Observed at AERONET (Aerosol Robotic Network) Sites,” Geophys. Res. Lett. 29(23) (2002), Doi: 10.1029/2002GL016305.Google Scholar
  11. 11.
    S. M. Sakerin and D. M. Kabanov, “Spectral Dependences of the Atmospheric Aerosol Optical Depth in Spectral Region 0.34–4 μm,” Opt. Atmosf. Okeana 20, 156–164 (2007).Google Scholar
  12. 12.
    S. M. Sakerin and D. M. Kabanov, “Correlations between the Parameters of Angström Formula and Aerosol Optical Thickness of the Atmosphere in the Wave Length Range from 1 to 4 μm,” Opt. Atmosf. Okeana 20, 222–228 (2007).Google Scholar
  13. 13.
    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar Photometer for Scientific Monitoring (Instrumentation, Techniques, Algorithms),” Opt. Atmosf. Okeana 14, 1162–1169 (2001).Google Scholar
  14. 14.
    D. M. Kabanov and S. M. Sakerin, “On Determination Methodics of Atmospheric Aerosol Optical Thickness in Near-IR Spectral Range,” Opt. Atmosf. Okeana 10, 866–875 (1997).Google Scholar
  15. 15.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and Yu. S. Turchinovich, “System for the Network Monitoring of the Atmospheric Constituents Active in Radiative Processes. Part 1. Sun Photometers,” Opt. Atmosf. Okeana 17, 354–360 (2004).Google Scholar
  16. 16.
    S. M. Sakerin, V. V. Veretennikov, T. B. Zhuravleva, D. M. Kabanov, and I. M. Nasrtdinov, “Comparison Analysis of Radiation Characteristics of Aerosol in Situations of Forest Fires Smokes and Ordinary Conditions,” Opt. Atmosf. Okeana 23 (2010, in press)Google Scholar
  17. 17.
    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information System for Network Sun Photometers,” Opt. Atmosf. Okeana 22, 61–67 (2009).Google Scholar
  18. 18.
    D. M. Kabanov and S. M. Sakerin, “Results of Studying the Total Moisture Content of the Atmosphere Using the Method of Optical Hygrometry. I. Methodics Analysis and Calibration Results,” Opt. Atmosf. Okeana 8, 852–860 (1995).Google Scholar
  19. 19.
    Tomsk Climate, Ed. By S. D. Kashinskii, L. I. Trifonova, and Ts. A. Shver (Gidrometeoizdat, Leningrad, 1982) [in Russian].Google Scholar
  20. 20.
    D. M. Kabanov, S. M. Sakerin, “Estimation of Mesometeorological Variations of the Atmospheric Transparency Characteristics,” J. Aerosol Sci. 32(Suppl. 1), 729–730 (2001).Google Scholar
  21. 21.
    A. S. Monin, Weather Forecast as a Physical Problem (Nauka, Moscow, 1969) [in Russian].Google Scholar
  22. 22.
    A Preliminary Cloudless Standart Atmosphere for Radiation Computation, World Climate Research Programme, WCP-112, WMO/TDN24 (1986).Google Scholar
  23. 23.
    T. B. Zhuravleva and S. M. Sakerin, “Simulation Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. 2. Range of Variability and Sensitivity in Input Parameters,” Opt. Atmosf. Okeana 22, 173–182 (2009).CrossRefGoogle Scholar
  24. 24.
    S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) Spectral Library; Jet Propulsion Laboratory (JPL) Spectral Library; the United States Geological Survey (USGS-Reston) Spectral Library (1998), Dedicated CD-ROM, Vers. 1. 2.Google Scholar
  25. 25.
    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. 1. Method of Calculation and Choice of Input Parameters,” Opt. Atmosf. Okeana 22, 163–172 (2009).Google Scholar
  26. 26.
    K. M. Markowicz, P. J. Flatau, J. Remiszewska, M. Witek, E. A. Reid, J. S. Reid, A. Bucholtz, and B. Holben, “Observations and Modeling of the Surface Aerosol Radiative Forcing During UAE2,” J. Atmos. Sci. 65, 2877–2891 (2008).CrossRefADSGoogle Scholar
  27. 27.
    A. McComiskey, S. Schwartz, B. Schmid, H. Guan, E. Lewis, P. Ricchiazzi, and J. Orgen, “Direct Aerosol Forcing: Calculation from Observables and Sensitivities in Inputs,” J. Geophys. Res. 113 (2008), doi: 10.1029/2007JD009170.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • T. B. Zhuravleva
    • 1
  • D. M. Kabanov
    • 1
  • S. M. Sakerin
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations