Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 6, pp 485–493 | Cite as

Dispersal and morphological characteristics of smoke particulate emission from fires in the boreal forests of Siberia

  • Yu. N. Samsonov
  • O. A. Belenko
  • V. A. Ivanov
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

About 10–14 million hectares of Siberian boreal forests burn annually. These forest fires, which amount to 300–500 million tons of biomass each year, result in smoke emission into the atmosphere. Direct measurements of smoke emissions conducted in several natural fire experiments at a taiga in Krasnoyarsk Territory between 2000–2009 have shown that the total amount of particulate emission from the fire is estimated to be 0.2–1 t/ha. These values represent 1–7% of the total biomass consumed during a typical forest fire in Siberia (15–30 t/ha); the remaining 93–99% of the burnt biomass are gaseous combustion products. Data on the disperse characteristics of particulate smokes, averaged over 16 natural fire experiments from 2007–2009, have shown that (89 ± 8)% of the total aerosol matter are in particles with aerodynamical diameters of less than 3 μm, (7 ± 6)% are in particles of 3–5 μm, and the remaining 5–10% of material is in particles larger than 7 μm. The morphological structure of the smoke particles indicates that submicron particles are formed due to condensation of organic vapors directly over a combustion zone, followed by their coagulation into particles of 1–3 μm. The elemental composition of the fine fraction of smoke emission, measured with the use of X-ray fluorescence with synchroton radiation excitation, is demonstrated to be used for discrimination between the sources of the elements.

Keywords

Smoke Forest Fire Biomass Burning Oceanic Optic Cascade Impactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Conard and G. A. Ivanova, “Wildfires in Russian Boreal Forest: Potential Impacts of Fire Regime Characteristics on Emission and Global Carbon Balance Estimates,” Environ. Pollut. 98, 305–313 (1997).CrossRefGoogle Scholar
  2. 2.
    D. R. Cahoon, B. J. Stocks, J. S. Levine, W. R. Cofer, and J. M. Pierson, “Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia,” J. Geophys. Res. 99, 18627–18638 (1994).CrossRefADSGoogle Scholar
  3. 3.
    E. S. Kasischke, K. Bergen, R. Fennimore, F. Sotelo, G. Stephens, A. Janetos, and H. H. Shugart, “Satellite Imagery Dives a Clear Picture of Russia’s Boreal Forest Fires,” EOS-Trans. Am. Geophys. Union 80, 141–147 (1999).CrossRefADSGoogle Scholar
  4. 4.
    Yu. N. Samsonov, S. A. Popova, O. A. Belenko, and O. V. Chankina, “Chemical Composition and Disperse Characteristics of Aerosol Smoke Emission from Fires in Boreal Forests of Siberia,” Opt. Atmosf. Okeana 21, 523–531 (2008).Google Scholar
  5. 5.
    Yu. N. Samsonov, K. P. Koutsenogii, V. I. Makarov, A. V. Ivanov, and V. A. Ivanov, “Aerosol Emission During Forest Fires in Boreal Forests of Siberia,” in Aerosols in Siberia, Ed. by K. P. Koutsenogii (Sib. Otd. RAN, Novosibirsk, 2006), pp. 282–298 [in Russian].Google Scholar
  6. 6.
    Yu. N. Samsonov, K. P. Koutsenogii, V. I. Makarov, A. V. Ivanov, V. A. Ivanov, D. J. McRae, S. G. Conard, S. P. Baker, and G. A. Ivanova, “Particulate Emission from Fires in Central Siberian Scots Pine Forest,” Can. J. Forest Res. 35, 2207–2217 (2005).CrossRefGoogle Scholar
  7. 7.
    K. P. Koutsenogii, Yu. N. Samsonov, T. V. Churkina, A. V. Ivanov, and V. A. Ivanov, “Microelements Compound in Aerosol Emission During Fires in Boreal Forests of Central Siberia,” Opt. Atmosf. Okeana 16, 461–465 (2003).Google Scholar
  8. 8.
    V. I. Makarov, Y. N. Samsonov, V. V. Korolev, and K. P. Koutsenogii, “Measurements of the Contents of Organic and Inorganic Carbons, 3,4-Benzo(a)pyrene, and Dibutil Phtalate in Atmospheric Aerosols in Western Siberia,” in Nucleation and Atmospheric Aerosols 1996, Ed. by M. Kulmala and P. E. Wagner (Pergamon, Oxford, 1996), pp. 714–717.CrossRefGoogle Scholar
  9. 9.
    V. V. Golovko, K. P. Koutsenogii, E. I. Kirov, L. K. Trubina, and A. P. Guk, “Using of Photogrammetric Treatment to Determine the Morphological Characteristics of Pollen Grains,” Opt. Atmosf. Okeana 13, 882–885 (2000).Google Scholar
  10. 10.
    J. Goldammer, “The Bor Forest Island Fire Experiment,” in Biomass Burning and Global Change, Ed. by J. S. Levine (MIT, Cambridge, 1996), Vol. 2, pp. 848–873.Google Scholar
  11. 11.
    Aerosol Measurements: Principles, Techniques, and Applications, Ed. by P. Baron and K. Willeke (Wiley, New York, 2001), ch. 10.Google Scholar
  12. 12.
    N. A. Fuks, Aerosol Mechanics (Akad. Nauk SSSR, Moscow, 1955), ch. 4 [in Russian].Google Scholar
  13. 13.
    L. F. Radke, D. A. Hegg, J. H. Lyons, C. A. Brock, P. V. Hobbs, R. Weiss, and R. Rasmussen, “Airborne Measurements on Smokes from Biomass Burning,” in Aerosols and Climate, Ed. by P. V. Hobbs and M. P. McCormick (Deepak Publ., Hampton, VA, 1988), pp. 411–422.Google Scholar
  14. 14.
    L. F. Radke, D. A. Hegg, P. V. Hobbs, J. D. Nance, J. H. Lyons, K. K. Laursen, R. E. Weiss, P. J. Riggan, and D. E. Ward, “Particulate and Trace Gas Emissions from Large Biomass Fire in North America,” in Global Biomass Burning: Atmospheric, Climatic, and Biosphere Implications, Ed. by J. S. Levine (MIT, Cambridge, 1991), pp. 209–224.Google Scholar
  15. 15.
    W. R. Cofer, K. P. Koutzenogii, A. Kokorin, and A. Ezcurra, “Biomass Burning and the Atmosphere,” in Sediment Record of Biomass Burning and Global Change. Ser. I. Global Environment Change, Vol. 51, Ed. by J. S. Clark, H. Cachier, J. G. Goldammer, and B. Stocks (Springer, Berlin, New York, 1997), pp. 189–206.Google Scholar
  16. 16.
    S. K. Friedlander, Smoke, Dust, and Haze, Fundamentals of Aerosol Dynamics, 2nd ed. (Oxford Univ., Oxford, New York, 2000).Google Scholar
  17. 17.
    K. Rahn, “Silicon and Aluminum in Atmospheric Aerosols: Crust-Air Fractionation,” Atmos. Environ. 10, 597–601 (1976).CrossRefGoogle Scholar
  18. 18.
    B. Mason, Principles of Geochemistry (Wiley, New York, 1966).Google Scholar
  19. 19.
    F. Echalar, A. Gaudichet, H. Cachier, and P. Artaxo, “Aerosol Emissions by Tropical Forest and Savanna Biomass Burning: Characteristic Trace Elements and Fluxes,” Geophys. Res. Lett. 22, 3039–3042 (1996).CrossRefADSGoogle Scholar
  20. 20.
    A. Gaudichet, F. Echalar, B. Chatenet, J. P. Quisefit, G. Malingre, H. Cachier, P. Buat-Menard, P. Artaxo, and W. Maenhautb, “Trace Elements in Tropical African Savanna Biomass Burning Aerosols,” J. Atmos. Chem. 22, 19–39 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. N. Samsonov
    • 1
  • O. A. Belenko
    • 2
  • V. A. Ivanov
    • 3
  1. 1.Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Siberian State Geodesic AcademyNovosibirskRussia
  3. 3.Siberian State Technological University, Institute of the Forest, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations