Skip to main content

Femtosecond laser pulse scattering on spherical polydispersions: Monte-carlo simulation

Abstract

This paper presents the results of the numerical solution (the Monte Carlo method) of the nonstationary radiation transfer equation in an optically dense disperse medium. As a model of the medium, the presence of a polydisperse liquid-droplet cloud is assumed. An ultrashort intense laser pulse stimulates nonstationary transition processes in the scattering particle volume even under linear interaction conditions during its propagation, resulting in time transformation of the characteristics of optical medium and, primarily, the scattering phase function. To calculate the time dynamics of the scattering phase function of a laser pulse by a transparent spherical particle, the nonstationary Mie theory was used, based on the Fourier representation of the original light pulse and the linear theory of radiation diffraction on a sphere. The calculated optical characteristics were used as the input parameters to numerically solve the problem of multiple scattering of a femtosecond pulse in a liquid-droplet cloud by the Monte Carlo method. Preliminary calculation results indicate the possibility of considerable enhancement of the backscattering signal owing to dynamic changes in the scattering phase function, resulting in reduction of anisotropy.

This is a preview of subscription content, access via your institution.

References

  1. Zimnyakov, A., Tuchin, V.V., Optical Tomography of Tissues, Quant. Electron., 2002, vol. 32, no. 5, pp. 849–856.

    Article  ADS  Google Scholar 

  2. Chany, P., Devarajy, B., Yamaday, M., Inaba, H., Coherent Detection Techniques in Optical Imaging of Tissues, Phys. Med. Biol., 1997, vol. 42, no. 4, pp. 855–867.

    Article  Google Scholar 

  3. Ultrashort Laser Pulses in Biology and Medicine, Berlin; Heidelberg: Springer, 2008.

  4. Kasparian, J., Wolf, J., Physics and Applications of Atmospheric Nonlinear Optics and Filamentation, Opt. Express., 2008, vol. 16, no. 2, pp. 466–493.

    Article  ADS  Google Scholar 

  5. Zemlyanov, A.A., Geints, Yu.E., Nonstationary Elastic Linear Light Scattering by Spherical microparticles, Atm. Oceanic Opt., 2002, vol. 15, no. 8, pp. 684–692.

    Google Scholar 

  6. Shifrin, K.S., Zolotov, I.G., Nonstationary Scattering of Electromagnetic Pulses by Spherical Particles, Appl. Opt., 1995, vol. 34, no. 3, pp. 552–558.

    Article  ADS  Google Scholar 

  7. Geints, Yu.E., Zemlyanov, A.A., Krekov, G.M., Krekova, M.M., Matvienko, G.G., Propagation of Femtosecond Laser Radiation through Cloud Aerosol: Monte Carlo Simulation, Atm. Oceanic Opt., 2006, vol. 19, no. 10, pp. 827–834.

    Google Scholar 

  8. Geints, Yu.E., Zemlyanov, A.A., Krekov, G.M., Krekova, M.M., Matvienko, G.G., Femtosecond Laser Pulse Propagation through Aerosol Clouds: Monte Carlo Simulation, Abstr. of XII Joint Int. Symposium on Atmospheric and Oceanic Optics, Tomsk, 2005, p. 78.

  9. Krekov, G.M., Matvienko, G.G., Geints, Yu.E., Zemlyanov, A.A., Krekova, M.M., Enhance Femtosecond Lidar Backscattering by Liquid Particle Cloud, Reviewed and Revised Papers of 23 Int. Laser Radar Conference, Nara, Japan, 2006, pp. 127–130.

  10. Quan, H., Guo, Z., Simulation of Whispering-gallerymode Resonance Shifts for Optical Miniature Biosensors, J. Quant. Spectrosc. and Radiat. Transfer., 2005, vol. 93, no. 1, pp. 231–242.

    Article  ADS  Google Scholar 

  11. Chylek, ’ P., Kiehl, J.T., Ko, M.K.W., Narrow Resonance Structure in the Mie Scattering Characteristics, Appl. Opt., 1978, vol. 17, no. 19, pp. 3019–3021.

    Article  ADS  Google Scholar 

  12. Chowdhury, D.Q., Hill, S.C., Barber, P.W., Time Dependence of Internal Intensity of a Dielectric Sphere on and near Resonance, J. Opt. Soc. Amer. B, 1992, vol. 9, no. 8, pp. 1364–1373.

    Article  ADS  Google Scholar 

  13. Zemlyanov, A.A., Geints, Yu.E., Intensity of Optical Field Inside a Weakly Absorbing Spherical Particle Irradiated by a Femtosecond Laser Pulse, Optics and Spectroscopy, 2004, vol. 96, no. 2, pp. 298–3404.

    Article  ADS  Google Scholar 

  14. Mishchenko, M.I., Travis, L.D., Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge Univ. Press, 2002.

    Google Scholar 

  15. Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions, N.Y.: Elsevier, 1969.

    Google Scholar 

  16. Krekov, G.M., Krekova, M.M., Khmelevtsov, S.S., Numerical Solution of Radiation Transfer Equation in the Medium with Nonstationary Optical Properties, in Rasprostranenie opticheskikh voln v atmosfere (Optical Wave Propagation in the Atmosphere), Novosibirsk: Nauka, 1975, pp. 34–47.

    Google Scholar 

  17. Monte Carlo Method in the Atmospheric optics, Marchuk, G.I., Ed., Novosibirsk: Nauka, 1976.

    Google Scholar 

  18. Mikhailov, G.A., Optimizatsiya vesovykh metodov Monte-Karlo (Optimization of Monte Carlo Weight Methods), Moscow: Nauka, 1987.

    Google Scholar 

  19. Baurayon, R., Mejean, G., Kosparian, J., White-light Filaments for Multiparameter Analysis of Cloud Microphysics, J. Opt Soc. Amer. B, 2005, vol. 22, no. 2, pp. 369–377.

    Article  ADS  Google Scholar 

  20. Boutou, V., Favre, C., Hill, S.C., Pan, Y.L., Wolf, J.P., Backward Enhanced Emission from Multiphoton Processes in Aerosols, Appl. Phys. B, 2002, vol. 75, no. 1, pp. 145–152.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, G.M. Krekov, G.G. Matvienko, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geints, Y.E., Zemlyanov, A.A., Krekov, G.M. et al. Femtosecond laser pulse scattering on spherical polydispersions: Monte-carlo simulation. Atmos Ocean Opt 23, 469–477 (2010). https://doi.org/10.1134/S1024856010060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010060060

Keywords

  • Phase Function
  • Oceanic Optic
  • Femtosecond Laser Pulse
  • Femtosecond Pulse
  • Droplet Cloud