Atmospheric and Oceanic Optics

, Volume 23, Issue 6, pp 462–468 | Cite as

Sensitivity of downward long-wave radiative fluxes to water vapor continuum absorption

  • K. M. Firsov
  • T. Yu. Chesnokova
Environmental Spectroscopy


An analysis of modern models of water vapor continuum absorption is presented. The sensitivity of downward long-wave fluxes to water vapor continuum absorption is investigated. The spectral intervals where continuum absorption is the most significant are defined. Recently discovered discrepancies between the model and experimentally measured absorption coefficients in the atmospheric transparency window of 8–12 μm are analyzed. It is shown that these discrepancies do not influence on calculation of long-wave radiative fluxes for the temperature range achievable in the Earth’s atmosphere.


Oceanic Optic Water Vapor Concentration Continuum Absorption Downward Flux Atmospheric Radiation Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “IPCC, 2007: Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change; 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Cambridge Univ., Cambridge, UK, USA, 2007).Google Scholar
  2. 2.
    I. M. Held and B. J. Soden, “Water Vapor Feedback and Global Warming,” Ann. Rev. Energy Environ. 25, 441–475 (2000).CrossRefGoogle Scholar
  3. 3.
    S. A. Tjemkes, T. Patterson, R. Rizzi, M. W. Shephard, S. A. Clough, M. Matricardi, J. D. Haigh, M. Hopfner, S. Payan, A. Trotsenko, N. Scott, P. Rayer, J. P. Taylor, C. Clerbaux, L. L. Strow, S. DeSouza-Machado, D. Tobin, and R. Knuteson, “The ISSWG Line-By-Line Inter-Comparison Experiment,” J. Quant. Spectrosc. Rad. Transfer 77, 433–453 (2003).CrossRefADSGoogle Scholar
  4. 4.
    E. J. Mlawer, S. A. Clough, P. D. Brown, and D. S. Tobin, “Recent Developments in the Water Vapor Continuum,” in Proc. of the 9th Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Texas, 1999, pp. 503–511.Google Scholar
  5. 5.
    B. A. Fomin and V. A. Falaleeva, “Recent Advance of Spectroscopy and Its Effect on Line by Line Calculations for Validation of Radiation Codes for Climate Models,” Atmospheric and Oceanic Optics 22, 803–806 (2009).CrossRefGoogle Scholar
  6. 6.
    Yi. Huang, V. Ramaswamy, and B. Soden, “An Investigation of the Sensitivity of the Clear-Sky Outgoing Longwave Radiation to Atmospheric Temperature and Water Vapor,” J. Geophys. Res. 112, D05104 (2007), doi: 10.1029/2005JD006906.CrossRefGoogle Scholar
  7. 7.
    P. M. Rowe, P. von Walden, and St. G. Warren, “Measurements of the Foreign-Broadened Continuum of Water Vapor in the 6.3 mkm Band at −30°C,” Appl. Opt. 45, 4366–4382 (2006).CrossRefADSGoogle Scholar
  8. 8.
    C. Serio, G. Masiello, F. Esposito, P. Di Girolamo, T. Di Iorio, L. Palchetti, G. Bianchini, G. Muscari, G. Pavese, R. Rizzi, B. Carli, and V. Cuomo, “Retrieval of Foreign-Broadened Water Vapor Continuum Coefficients from Emitted Spectral Radiance in the H2O Rotational Band from 240 to 590 cm−1”, Opt. Express 16, 15816–15833 (2008).CrossRefADSGoogle Scholar
  9. 9.
    D. C. Tobin, F. A. Best, P. D. Brown, S. A. Clough, R. G. Dedecker, R. G. Ellingson, R. K. Garcia, H. B. Howell, R. O. Knuteson, E. J. Mlawer, H. E. Revercomb, J. F. Short, P. F. W. Van Delst, and V. P. Walden, “Downwelling Spectral Radiance Observations at the SHEBA Ice Station: Water Vapor Continuum Measurements from 17 to 26 μm,” J. Geophys. Res. D 104, 2081–2092 (1999).CrossRefADSGoogle Scholar
  10. 10.
    D. C. Tobin, L. L. Strow, W. J. Lafferty, and W. B. Olson, “Experimental Investigation of the Self- and N2-Broadened Continuum Within the 2 Band of Water Vapor,” Appl. Opt. 35, 4724–4734 (1996).CrossRefADSGoogle Scholar
  11. 11.
    Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-Vapor Continuum Absorption in the 800–1250 cm−1 Spectral Region at Temperatures from 311 to 363 K,” J. Quant. Spectrosc. Rad. Transfer 109, 2291–2302 (2008).CrossRefADSGoogle Scholar
  12. 12.
    I. V. Ptashnik, “Evidence for the Contribution of Water Dimers to the Near-IR Water Vapour Self-Continuum,” J. Quant. Spectrosc. Rad. Transfer 109, 831–852 (2008).CrossRefADSGoogle Scholar
  13. 13.
    D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, “Laboratory Measurements of the Water Vapor Continuum in the 1200–8000 cm−1 Region between 293 K and 351 K,” J. Geophys. Res. 114, D21301 (2009), doi: 10.1029/2008JD011355.CrossRefADSGoogle Scholar
  14. 14.
    R. G. Ellington, “The State of the ARM-IRF Accomplishments trough 1997,” in Proc. the 8th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tuscon, Arisona, 1998, pp. 245–248.Google Scholar
  15. 15.
    F. F. Bryukhan’, Methods of Climatic Processing and Analysis of Aerological Information (Mir, Moscow, 1975) [in Russian].Google Scholar
  16. 16.
    T. Yu. Chesnokova and K. M. Firsov, “Calculation Errors of the Longwave Fluxes in the Earth Atmosphere Due to the Uncertainties of Initial Spectroscopic Information,” Proc. SPIE 6580, 65800Q (2006), doi:10.1117/12.724948.Google Scholar
  17. 17.
    D. E. Burch, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Techn. Report AFGL-TR-84-0128 (Air Force Geophys. Lab., 1984).Google Scholar
  18. 18.
    R. H. Tipping and Q. Ma, “Theory of the Water Vapor Continuum and Validations,” Atmos. Res. 36, 69–94 (1995).CrossRefGoogle Scholar
  19. 19.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Contour and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  20. 20.
    Y. Scribano and C. Leforestier, “Contribution of Water Dimer Absorption to the Millimeter and Far Infrared Atmospheric Water Continuum,” J. Chem. Phys. 126, 234301 (2007).CrossRefADSGoogle Scholar
  21. 21.
    A. A. Vigasin, “Water Vapor Continuum Absorption in Various Mixtures: Possible Role of Weakly Bound Complexes,” J. Quant. Spectrosc. Rad. Transfer 64, 25–40 (2000).CrossRefADSGoogle Scholar
  22. 22.
    R. E. Roberts, J. E. A. Selby, and L. M. Biberman, “Infrared Continuum Absorption by Atmospheric Water Vapor in the 8–12 Micron Meter Window,” Appl. Opt. 15, 2085–2090 (1976).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. M. Firsov
    • 1
  • T. Yu. Chesnokova
    • 2
  1. 1.Volgograd State UniversityVolgogradRussia
  2. 2.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations