Skip to main content

Measurements of water vapor line shifts in the 8650–9020 cm−1 region caused by pressure of atmospheric gases

Abstract

High resolution measurements of N2 and O2 broadening and shift coefficients for more than 100 H2O absorption lines have been performed. Data on the broadening and shift coefficients were obtained from the analysis of the absorption spectra, recorded in the 8650–9020 cm−1 spectral region at room temperature with the help of an IFS 125 HR Fourier spectrometer at a spectral resolution of 0.01 cm−1. It is shown that for a more exact definition of the line shift coefficients, it is necessary to take into account the contribution of all neighboring lines, even with an intensity two orders of magnitude lower than that of the measured line. A linear pressure dependence of line shifts was observed for all of the buffer gases.

This is a preview of subscription content, access via your institution.

References

  1. V. V. Zuev, Yu. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, and O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by Differencial-Absorption Method,” Opt. Lett. 10(7), 318–320 (1985).

    Article  ADS  Google Scholar 

  2. E. V. Browell, B. E. Grossman, A. D. Bykov, V. A. Kapitanov, V. V. Lazarev, Yu. N. Ponomarev, L. N. Sinitsa, E. A. Korotchenko, V. N. Stroinova, and B. A. Tikhomirov, “Study of H2O Absorption Line Shifts Caused by Air Pressure in the Visible,” Opt. Atmosf. Okeana 3, 675–691 (1990) [Atmosph. Ocean. Opt. 3, 617 (1990)].

    Google Scholar 

  3. R. R. Gamache and J.-M. Hartmann, “Collisional Parameters of H2O Lines: Effects of Vibration,” J. Quant. Spectrosc. Rad. Transfer 83, 119–147 (2004).

    Article  ADS  Google Scholar 

  4. R. A. Toth, “Measurements and Analysis (Using Empirical Functions for Widths) of Air- and Self-Broadening Parameters of H2O,” J. Quant. Spectrosc. Rad. Transfer 94, 1–50 (2005).

    Article  ADS  Google Scholar 

  5. A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyu- terev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer 105, 326–355 (2007).

    Article  ADS  Google Scholar 

  6. R. A. Toth, “Measurements of Positions, Strengths and Self-Broadened Widths of H2O from 2900 to 8000 cm−1: Line Strength Analysis of the 2nd Triad Bands,” J. Quant. Spectrosc. Rad. Transfer 94, 51–107 (2005).

    Article  ADS  Google Scholar 

  7. L. Brown, C. M. Humphrey, and R. R. Gamache, “CO2-Broadened Water in the Pure Rotation and 2 Fundamental Regions,” J. Mol. Spectrosc. 246, 1–21 (2007).

    Article  ADS  Google Scholar 

  8. S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Herman, and A. C. Vandaele, “Water Vapor Line Broadening and Shifting by Air in the 26000–13000 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 82, 119–131 (2003).

    Article  ADS  Google Scholar 

  9. M.-F. Merienne, A. Jenouvrier, C. Hermans, A. C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water Vapor Line Parameters in the 13000–9250 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer 82, 99–117 (2003).

    Article  ADS  Google Scholar 

  10. Qunjun Zou and P. Varanasi, “Laboratory Measurement of the Spectroscopic Line Parameters of Water Vapor in the 610–2100 and 3000–4050 cm−1 Regions at Lower-Tropospheric Temperatures,” J. Quant. Spectrosc. Rad. Transfer 82, 45–98 (2003).

    Article  ADS  Google Scholar 

  11. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode Laser Measurements of Temperature-Dependent Collisional-Narrowing and Broadening Parameters of Ar-Perturbed H2O Transitions at 1391.7 and 1397.8 nm,” J. Quant. Spectrosc. Rad. Transfer 109, 132–143 (2008).

    Article  ADS  Google Scholar 

  12. A. I. Nadezhdinskii, “Diode Laser Spectroscopy: Precise Spectral Line Shape Measurements,” Spectrochim. Acta A 52, 1041–1060 (1996).

    Article  ADS  Google Scholar 

  13. J.-M. Hartman, J. Taine, J. Bonamy, B. Labani, and D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules, II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).

    Article  ADS  Google Scholar 

  14. V. Zeninari, B. Parvitte, D. Courtois, N. N. Lavrentieva, Yu. N. Ponomarev, and G. Durry, “Pressure Broadening and Shift Coefficients of H2O Due to Perturbation by N2, O2, H2, and He in the 1.39 μm Region: Experiment and Calculations,” Mol. Phys. 102, 1697–1607 (2004).

    Article  ADS  Google Scholar 

  15. A. Bandyopadhyay, B. Ray, P. N. Ghosh, D. L. Niles, and R. R. Gamache, “Diode Laser Spectroscopic Measurements and Theoretical Calculations of Line Parameters of Nitrogen-Broadened Water Vapor Overtone Transitions in the 818–834 nm Wavelength Region,” J. Mol. Spectrosc. 242, 10–16 (2007).

    Article  ADS  Google Scholar 

  16. A. D. Bykov, V. V. Lazarev, Yu. N. Ponomarev, Stro V. N. Inova, and B. A. Tikhomirov, “H2O Absorption Line Shift in ν1 + 3ν3 Band, Induced by Noble Gases Pressure,” Opt. Atmosf. Okeana 7, 1207–1219 (1994).

    Google Scholar 

  17. M. A. Koshelev, M. Yu. Tretyakov, G. Yu. Golubiatnikov, V. V. Parshin, V. N. Markov, and I. A. Koval, “Broadening and Shifting of the 321–325-, and 380–GHz Lines of Water Vapor by Pressure of Atmospheric Gases,” J. Mol. Spectrosc. 241, 101–108 (2007).

    Article  ADS  Google Scholar 

  18. G. Yu. Golubiatnikov, M. A. Koshelev, and A. F. Krupnov, “Pressure Shift and Broadening of 110–101 Water Vapor Lines by Atmosphere Gases,” J. Quant. Spectrosc. Rad. Transfer 109, 1828–1833 (2008).

    Article  ADS  Google Scholar 

  19. B. E. Grossman and E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strengths, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).

    Article  ADS  Google Scholar 

  20. B. E. Grossman and E. V. Browell, “Water-Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).

    Article  ADS  Google Scholar 

  21. B. E. Grossman and E. V. Browell, “Line-Shape Asymmetry of Water Vapor Absorption Lines in the 720-Nm Wavelength Region,” J. Quant. Spectrosc. Rad. Transfer 45, 339–348 (1991).

    Article  ADS  Google Scholar 

  22. B. E. Grossman and E. V. Browell, “Measurements of H2 16O Linestrengths and Air-Induced Broadenings and Shifts in the 815-nm Spectral Region,” J. Mol. Spectrosc. 185, 58–70 (1997).

    Article  ADS  Google Scholar 

  23. D. Jacquemart, R. R. Gamache, and L. S. Rothman, “Semi-Empirical Calculation of Air-Broadened Half-Widths and Air Pressureinduced Frequency Shifts of Water-Vapor Absorption Lines,” J. Quant. Spectrosc. Rad. Transfer 96, 205–239 (2005).

    Article  ADS  Google Scholar 

  24. B. Antony, P. Gamache, C. Szembek, D. Niles, and R. R. Gamache, “Modified Complex Robert-Bonamy Formalism Calculations for Strong to Weak Interacting Systems,” Mol. Phys. 104, 2791–2799 (2006).

    Article  ADS  Google Scholar 

  25. A. Bykov, N. Lavrentieva, L. Sinitsa, “Semi-Empiric Approach to the Calculation of H2O and CO2 Line Broadening and Shifting,” Mol. Phys. 102, 1653–1658 (2004).

    Article  ADS  Google Scholar 

  26. J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “Measurement of Nitrogen-Shifting Coefficients of Water-Vapor Lines between 5000 and 10700 cm−1,” Can. J. Phys. 69, 1286–1297 (1991).

    ADS  Google Scholar 

  27. J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, and C. Camy-Peyret, “H2 16O: Line Positions and Intensities between 8000 and 9500 cm−1: The Second Hexad of Interacting Vibrational States: {(050), (130), (031), (210), (111), (012)},” Can. J. Phys. 66, 997–1011 (1988).

    ADS  Google Scholar 

  28. L. S. Rothman, I. E. Gordon, A. Barbe, Chris D. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldmanm, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Van der Auwer, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Rad. Transfer 110, 533–572 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.M. Petrova, A.M. Solodov, A.A. Solodov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrova, T.M., Solodov, A.M. & Solodov, A.A. Measurements of water vapor line shifts in the 8650–9020 cm−1 region caused by pressure of atmospheric gases. Atmos Ocean Opt 23, 455–461 (2010). https://doi.org/10.1134/S1024856010060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010060047

Keywords

  • Absorption Line
  • Oceanic Optic
  • Line Shift
  • Water Vapor Line
  • Weak Absorption Line