V. V. Zuev, Yu. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, and O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by Differencial-Absorption Method,” Opt. Lett. 10(7), 318–320 (1985).
Article
ADS
Google Scholar
E. V. Browell, B. E. Grossman, A. D. Bykov, V. A. Kapitanov, V. V. Lazarev, Yu. N. Ponomarev, L. N. Sinitsa, E. A. Korotchenko, V. N. Stroinova, and B. A. Tikhomirov, “Study of H2O Absorption Line Shifts Caused by Air Pressure in the Visible,” Opt. Atmosf. Okeana 3, 675–691 (1990) [Atmosph. Ocean. Opt. 3, 617 (1990)].
Google Scholar
R. R. Gamache and J.-M. Hartmann, “Collisional Parameters of H2O Lines: Effects of Vibration,” J. Quant. Spectrosc. Rad. Transfer 83, 119–147 (2004).
Article
ADS
Google Scholar
R. A. Toth, “Measurements and Analysis (Using Empirical Functions for Widths) of Air- and Self-Broadening Parameters of H2O,” J. Quant. Spectrosc. Rad. Transfer 94, 1–50 (2005).
Article
ADS
Google Scholar
A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyu- terev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer 105, 326–355 (2007).
Article
ADS
Google Scholar
R. A. Toth, “Measurements of Positions, Strengths and Self-Broadened Widths of H2O from 2900 to 8000 cm−1: Line Strength Analysis of the 2nd Triad Bands,” J. Quant. Spectrosc. Rad. Transfer 94, 51–107 (2005).
Article
ADS
Google Scholar
L. Brown, C. M. Humphrey, and R. R. Gamache, “CO2-Broadened Water in the Pure Rotation and 2 Fundamental Regions,” J. Mol. Spectrosc. 246, 1–21 (2007).
Article
ADS
Google Scholar
S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Herman, and A. C. Vandaele, “Water Vapor Line Broadening and Shifting by Air in the 26000–13000 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 82, 119–131 (2003).
Article
ADS
Google Scholar
M.-F. Merienne, A. Jenouvrier, C. Hermans, A. C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water Vapor Line Parameters in the 13000–9250 cm−1 Region,” J. Quant. Spectrosc. Rad. Transfer 82, 99–117 (2003).
Article
ADS
Google Scholar
Qunjun Zou and P. Varanasi, “Laboratory Measurement of the Spectroscopic Line Parameters of Water Vapor in the 610–2100 and 3000–4050 cm−1 Regions at Lower-Tropospheric Temperatures,” J. Quant. Spectrosc. Rad. Transfer 82, 45–98 (2003).
Article
ADS
Google Scholar
H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode Laser Measurements of Temperature-Dependent Collisional-Narrowing and Broadening Parameters of Ar-Perturbed H2O Transitions at 1391.7 and 1397.8 nm,” J. Quant. Spectrosc. Rad. Transfer 109, 132–143 (2008).
Article
ADS
Google Scholar
A. I. Nadezhdinskii, “Diode Laser Spectroscopy: Precise Spectral Line Shape Measurements,” Spectrochim. Acta A 52, 1041–1060 (1996).
Article
ADS
Google Scholar
J.-M. Hartman, J. Taine, J. Bonamy, B. Labani, and D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules, II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
Article
ADS
Google Scholar
V. Zeninari, B. Parvitte, D. Courtois, N. N. Lavrentieva, Yu. N. Ponomarev, and G. Durry, “Pressure Broadening and Shift Coefficients of H2O Due to Perturbation by N2, O2, H2, and He in the 1.39 μm Region: Experiment and Calculations,” Mol. Phys. 102, 1697–1607 (2004).
Article
ADS
Google Scholar
A. Bandyopadhyay, B. Ray, P. N. Ghosh, D. L. Niles, and R. R. Gamache, “Diode Laser Spectroscopic Measurements and Theoretical Calculations of Line Parameters of Nitrogen-Broadened Water Vapor Overtone Transitions in the 818–834 nm Wavelength Region,” J. Mol. Spectrosc. 242, 10–16 (2007).
Article
ADS
Google Scholar
A. D. Bykov, V. V. Lazarev, Yu. N. Ponomarev, Stro V. N. Inova, and B. A. Tikhomirov, “H2O Absorption Line Shift in ν1 + 3ν3 Band, Induced by Noble Gases Pressure,” Opt. Atmosf. Okeana 7, 1207–1219 (1994).
Google Scholar
M. A. Koshelev, M. Yu. Tretyakov, G. Yu. Golubiatnikov, V. V. Parshin, V. N. Markov, and I. A. Koval, “Broadening and Shifting of the 321–325-, and 380–GHz Lines of Water Vapor by Pressure of Atmospheric Gases,” J. Mol. Spectrosc. 241, 101–108 (2007).
Article
ADS
Google Scholar
G. Yu. Golubiatnikov, M. A. Koshelev, and A. F. Krupnov, “Pressure Shift and Broadening of 110–101 Water Vapor Lines by Atmosphere Gases,” J. Quant. Spectrosc. Rad. Transfer 109, 1828–1833 (2008).
Article
ADS
Google Scholar
B. E. Grossman and E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strengths, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
Article
ADS
Google Scholar
B. E. Grossman and E. V. Browell, “Water-Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
Article
ADS
Google Scholar
B. E. Grossman and E. V. Browell, “Line-Shape Asymmetry of Water Vapor Absorption Lines in the 720-Nm Wavelength Region,” J. Quant. Spectrosc. Rad. Transfer 45, 339–348 (1991).
Article
ADS
Google Scholar
B. E. Grossman and E. V. Browell, “Measurements of H2
16O Linestrengths and Air-Induced Broadenings and Shifts in the 815-nm Spectral Region,” J. Mol. Spectrosc. 185, 58–70 (1997).
Article
ADS
Google Scholar
D. Jacquemart, R. R. Gamache, and L. S. Rothman, “Semi-Empirical Calculation of Air-Broadened Half-Widths and Air Pressureinduced Frequency Shifts of Water-Vapor Absorption Lines,” J. Quant. Spectrosc. Rad. Transfer 96, 205–239 (2005).
Article
ADS
Google Scholar
B. Antony, P. Gamache, C. Szembek, D. Niles, and R. R. Gamache, “Modified Complex Robert-Bonamy Formalism Calculations for Strong to Weak Interacting Systems,” Mol. Phys. 104, 2791–2799 (2006).
Article
ADS
Google Scholar
A. Bykov, N. Lavrentieva, L. Sinitsa, “Semi-Empiric Approach to the Calculation of H2O and CO2 Line Broadening and Shifting,” Mol. Phys. 102, 1653–1658 (2004).
Article
ADS
Google Scholar
J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “Measurement of Nitrogen-Shifting Coefficients of Water-Vapor Lines between 5000 and 10700 cm−1,” Can. J. Phys. 69, 1286–1297 (1991).
ADS
Google Scholar
J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, and C. Camy-Peyret, “H2
16O: Line Positions and Intensities between 8000 and 9500 cm−1: The Second Hexad of Interacting Vibrational States: {(050), (130), (031), (210), (111), (012)},” Can. J. Phys. 66, 997–1011 (1988).
ADS
Google Scholar
L. S. Rothman, I. E. Gordon, A. Barbe, Chris D. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldmanm, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Van der Auwer, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Rad. Transfer 110, 533–572 (2009).
Article
ADS
Google Scholar