Atmospheric and Oceanic Optics

, Volume 23, Issue 6, pp 441–447 | Cite as

Statistical modeling of the point spread function in the spherical atmosphere and a criterion for detecting image isoplanarity zones

  • V. V. Belov
  • M. V. Tarasenkov
Optical Waves Propagation


An algorithm is proposed to simulate a point spread function by the Monte Carlo method in order to represent external channel formation in the spherical model system of the “atmosphere-earth surface.” A new way of defining isoplanarity zones of optically homogeneous extended objects is described. We demonstrate that image restoration with a specified error for these objects when they are observed on the earth’s surface from space by an ideal optical system can determine a definite point spread function set.


Point Spread Function Image Restoration Spherical Geometry Radiation Transfer Equation Single Scattering Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer through a Scattering Medium (Nauka Tekhnika, Minsk, 1985; Springer, Heidelberg, 1991).Google Scholar
  2. 2.
    A. Papulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).Google Scholar
  3. 3.
    V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Linear Systems Theory in Optics of Disperse Media (Spektr Inst. Opt. Atmosf. SO RAN, Tomsk, 1997) [in Russian].Google Scholar
  4. 4.
    V. V. Belov, B. D. Borisov, and I. Yu. Makushkina, “Some Regularities of Formation of Side Illumination Noise in Vision System,” Opt. Atmosf. 1(2), 18–24 (1988).Google Scholar
  5. 5.
    V. V. Belov, G. M. Krekov, and I. Yu. Makushkina, “Isoplanarity in Vision Systems,” Opt. Atmosf. 2, 1011–1018 (1989).Google Scholar
  6. 6.
    V. V. Belov, “Optical Transfer Properties of External Channels and Image Isoplanarity in Vision Systems,” Opt. Atmosf. Okeana 22, 1101–1107 (2009).Google Scholar
  7. 7.
    V. V. Belov and M. V. Tarasenkov, “Statistical Modeling of the Intensity of Light Fluxes Reflected by the Earth’s Spherical Surface,” Opt. Atmosf. Okeana 23, 14–20 (2010) [Atmosph. Ocean Opt.23, 197 (2010)].CrossRefGoogle Scholar
  8. 8.
    F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7, ARGL-TR-86-0177, ERP 1010, Hansom AFB, MA 01731.Google Scholar
  9. 9.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte-Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Belov
    • 1
    • 2
  • M. V. Tarasenkov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations