Skip to main content

Atmospheric radiation distributed information-computational system


The Atmospheric Radiation Internet-accessible distributed information-computational system is described. The system’s servers are located at the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk); Volgograd State University; and Ural State University (Yekaterinburg). The information-computational system not only provides for access to data, but also allows for the calculation of the radiative characteristics of the Earth’s atmosphere. The system is aimed at investigations of the radiative transfer in the Earth’s atmosphere. The radiative models of the system are interesting for postgraduate students, students, and specialists in the area of atmospheric radiation and climate.

This is a preview of subscription content, access via your institution.


  1. The Atmospheric Radiation Measurement Program,

  2. Atmospheric Infrared Sounder, Jet Propulsion Laboratory,

  3. R. N. Halthore, D. Crisp, S. E. Schwartz, G. P. Anderson, A. Berk, B. Bonnel, O. Boucher, F.-L. Chang, M.-D. Chou, E. E. Clothiaux, P. Dubuisson, B. Fomin, Y. Fouquart, S. Freidenreich, C. Gautier, S. Kato, I. Laszlo, Z. Li, J. H. Mather, A. Plana-Fattori, V. Ramaswamy, P. Ricchiazzi, Y. Shiren, A. Trish- chenko, and W. Wiscombe, “Intercomparison of Shortwave Radiative Transfer Codes and Measurements,” J. Geophys. Res. 110(11), D11206 (2005).

    Article  ADS  Google Scholar 

  4. International TOVS Group, “Intercomparison of Forward and Jacobian Radiative Transfer Models for HIRS and AMSU Channels,”

  5. DISORT,

  6. J. Wang and G. P. Anderson, “Validation of FASCODE and MODTRAN3: Comparison of Model Calculations with Interferometer Observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, Proc. SPIE 2309, 170–183 (1994).

    Google Scholar 

  7. Radiative Transfer Working Group, “Line-By-Line Radiative Transfer Model,”

  8. Center for Astrophysics, “HITRAN,”

  9. E. P. Gordov, A. Z. Fazliev, and V. N. Lykosov, Web Portal on Environmental Sciences “ATMOS”, Adv. Geosci. 8, 33–38 (2006).

    Article  Google Scholar 

  10. K. M. Firsov, A. Z. Fazliev, S. M. Sakerin, T. B. Zhuravleva, B. A. Fomin, and V. I. Zakharov, “Informational Computational System ‘Atmospheric Radiation’, Modern State, Development Prospects,” in Proc. of the 9th All-Russ. Sci. Conf. on Electronic Libraries: Prospect Methods and Technologies, Electronic Collections — RSDL’2007 (Pereslavl’-Zalesskii, 2007), Part 1, pp. 62–66.

  11. K. M. Firsov, A. Z. Fazliev, T. Yu. Chesnokova, and E. M. Kozodoeva, “Distributed Informational Computational System ‘Atmospheric Radiation’,” in Proc. of the 11th All-Russ. Sci. Conf. on Electronic Libraries: Prospect Methods and Technologies, Electronic Collections, Petrozavodsk, 17–21 Sept. 2009, pp. 393–399.

  12. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Modelling of Modern Climate Using Atmospheric Model of IVM RAN, Description of A5421 Model (vers. from 1997) and Experiment Results According to AMIR II Program (VINITI, Moscow, 1998), [in Russian].

    Google Scholar 

  13. V. A. Frolkis and E. V. Rozanov, “Radiation Code for Climate and General Circulation Models,” in IRS’92 Current Problems in Atmospheric Radiation, Ed. by S. Keevallik (Deepak Publ., Hampton, USA, 1993), pp. 176–179.

    Google Scholar 

  14. A. Z. Fazliev, “Development of Information Systems in IOA SO RAN,” Opt. Atmosf. Okeana 22(10), 988–992 (2009).

    Google Scholar 

  15. “Intermediate Program Support, Means of Creation and Support of Information Computing Systems,” Grant No. 06-07-89201.

  16. N. A. Lavrent’ev and A. Z. Fazliev, “Accounting of Intervention in Systems of Work Flows Control,” Vychisl. Tekhnol. 13(3, Spec. Iss.), 12–18 (2008).

    Google Scholar 

  17. G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (TNTs SO AN SSSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  18. G. M. Krekov and R. F. Rakhimov, Optical-Radar Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  19. Y. X. Hu and K. Stamnes, “An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models,” J. Climate 6(4), 728–742 (1993).

    Article  ADS  Google Scholar 

  20. A. A. Slingo, “GCM Parameterization for the Shortwave Radiative Properties of Water Clouds,” J. Atmos. Sci. 46(10), 1419–1427 (1989).

    Article  ADS  Google Scholar 

  21. MODIS Atmosphere,

  22. A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient Technique for Line-By-Line Calculating the Transmittance of the Absorbing Atmosphere,” Atmos. Ocean. Opt. 8(10), 847–850 (1995).

    Google Scholar 

  23. K. M. Firsov, A. A. Mitsel, Yu. N. Ponomarev, and I. V. Ptashnik, “Parametrization of Transmittanse for Application in Atmospheric Optics,” J. Quant. Spectrosc. Radiat. Trasfer 59(3–5), 203–213 (1998).

    Article  ADS  Google Scholar 

  24. K. M. Firsov, T. Yu. Chesnokova, V. V. Belov, A. B. Serebrennikov, and Yu. N. Ponomarev, “Exponential Series in Calculations of Radiative Transfer by the Monte Carlo Method in Spatially Inhomogeneous Aerosol-Gas Media,” Vychisl. Tekhnol. 7(5), 77–87 (2002).

    MATH  MathSciNet  Google Scholar 

  25. A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Optical Radiation Transfer in Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].

    Google Scholar 

  26. T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of Exponential Series to Model Wide-Band Fluxes of Solar Radiation in the Earth Atmosphere,” Opt. Atmosf. Okeana 20(9), 799–804 (2007).

    Google Scholar 

  27. K. M. Firsov and T. Yu. Chesnokova, “New Method For. Considering the Overlap of Atmospheric Gas Absorption Bands During Transfer Equation Parametrization,” Opt. Atmosf. Okeana 11(4), 410–415 (1998).

    Google Scholar 

  28. R. Robertc, J. Selby, and L. Biberman, Infrared Continuum Absorption by Atmospheric Water Vapor in the 8–12 μm Window,” Appl. Opt. 15(9), 2085–2090 (1976).

    Article  ADS  Google Scholar 

  29. V. N. Arefiev, “oMolecular Absorption and Extinction of Infrared Emission at the Atmosphere,” Thesis for a Doctor’s Degree (1990).

  30. S. Clough, F. Kneizis, and R. Davies, “Line Shape and the Water Vapor Continuum,” Atmos. Res., No. 23, 229–241 (1989).

    Google Scholar 

  31. E. J. Mlawer, S. A. Clough, P. D. Brown, and D. S. Tobin, “Collision-Indused Effects and the Water Vapor Continuum,” in Proc. of the 8th ARM Science Team Meeting, Tuscon, Arisona, 1998, pp. 503–511.

  32. Continuum Model, Radiative Transfer Working Group,

  33. T. B. Zhuravleva and K. M. Firsov, ““Algorithms for Calculating Spectral Fluxes of Solar Radiation in Cloudy and Clear Atmospheres,” Opt. Atmosf. Okeana 17(11), 903–911 (2004) [Atmos. Ocean. Opt. 17, 903 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © K.M. Firsov, T.Yu. Chesnokova, E.M. Kozodoeva, A.Z. Fazliev, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Firsov, K.M., Chesnokova, T.Y., Kozodoeva, E.M. et al. Atmospheric radiation distributed information-computational system. Atmos Ocean Opt 23, 411–417 (2010).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Radiative Transfer
  • Molecular Absorption
  • Atmospheric Radiation
  • Atmospheric Optic
  • Effective Absorption Coefficient